Klasifikace radarových detekcí pomocí konvolučních neuronových sítí

Loading...
Thumbnail Image

Date

Authors

Láníček, Adam

Mark

B

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Cílem této práce bylo vytvořit mechanismus klasifikace detekcí z radaru pracujícího v pásmu milimetrových vln. Práce představuje systém pro zakódování radarových dat do obrázku a dále specializovaný anotační nástroj pro podporu vytváření datových sad cílených pro použití v You Only Look Once (YOLO) metodách detekce objektů. Na datové sadě vytvořené na základě radarových snímků z cyklostezky vykazoval tento detektor úspěšnost 91%. Na základě této skutečnosti lze konstatovat, že moje řešení je důkazem proveditelnosti tohoto přístupu, který lze dále rozvíjet směrem k docílení vyšší přesnosti detekcí, případně jej přizpůsobit speciálním potřebám a prostředím.
The goal of this thesis was to create an object recognition pipeline for millimeter wave radar data. The work presents a mechanism for encoding the radar data into images as well as an in-house developed annotation tool to facilitate the dataset creation for the You Only Look Once (YOLO) based object recognition models. The YOLO detector trained on a cycling route dataset reported 91% accuracy. This solution, therefore, provides a proof of concept that can be further developed to improve the detection capabilities or to meet the requirements of the specific use cases and environments.

Description

Citation

LÁNÍČEK, A. Klasifikace radarových detekcí pomocí konvolučních neuronových sítí [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. .

Document type

Document version

Date of access to the full text

Language of document

en

Study field

Informační technologie

Comittee

Date of acceptance

Defence

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO