Klasifikace radarových detekcí pomocí konvolučních neuronových sítí

Loading...
Thumbnail Image
Date
Authors
Láníček, Adam
ORCID
Mark
B
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta informačních technologií
Abstract
Cílem této práce bylo vytvořit mechanismus klasifikace detekcí z radaru pracujícího v pásmu milimetrových vln. Práce představuje systém pro zakódování radarových dat do obrázku a dále specializovaný anotační nástroj pro podporu vytváření datových sad cílených pro použití v You Only Look Once (YOLO) metodách detekce objektů. Na datové sadě vytvořené na základě radarových snímků z cyklostezky vykazoval tento detektor úspěšnost 91%. Na základě této skutečnosti lze konstatovat, že moje řešení je důkazem proveditelnosti tohoto přístupu, který lze dále rozvíjet směrem k docílení vyšší přesnosti detekcí, případně jej přizpůsobit speciálním potřebám a prostředím.
The goal of this thesis was to create an object recognition pipeline for millimeter wave radar data. The work presents a mechanism for encoding the radar data into images as well as an in-house developed annotation tool to facilitate the dataset creation for the You Only Look Once (YOLO) based object recognition models. The YOLO detector trained on a cycling route dataset reported 91% accuracy. This solution, therefore, provides a proof of concept that can be further developed to improve the detection capabilities or to meet the requirements of the specific use cases and environments.
Description
Citation
LÁNÍČEK, A. Klasifikace radarových detekcí pomocí konvolučních neuronových sítí [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. .
Document type
Document version
Date of access to the full text
Language of document
en
Study field
Informační technologie
Comittee
Date of acceptance
Defence
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO