Elevating Platinum to Volumetric Capacitance: High Surface Area Electrodes through Reactive Pt Sputtering

dc.contributor.authorGryszel, Maciejcs
dc.contributor.authorJakešová, Mariecs
dc.contributor.authorVu, Xuan Thangcs
dc.contributor.authorIngebrandt, Svencs
dc.contributor.authorGlowacki, Eric Danielcs
dc.coverage.issue5cs
dc.coverage.volume13cs
dc.date.accessioned2024-10-14T09:04:04Z
dc.date.available2024-10-14T09:04:04Z
dc.date.issued2024-05-17cs
dc.description.abstractPlatinum is the most widespread electrode material used for implantable biomedical and neuroelectronic devices, motivating exploring ways to improve its performance and understand its fundamental properties. Using reactive magnetron sputtering, PtOx is prepared, which upon partial reduction yields a porous thin-film form of platinum with favorable properties, notably record-low impedance values outcompeting other reports for platinum-based electrodes. It is established that its high electrochemical capacitance scales with thickness, in the way of volumetric capacitor materials like IrOx and poly(3,4-ethylenedioxythiophene), PEDOT. Unlike these two well-known analogs, however, it is found that PtOx capacitance is not caused by reversible pseudofaradaic reactions but rather due to high surface area. In contrast to IrOx, PtOx is not a reversible valence-change oxide, but rather a porous form of platinum. The findings show that this oxygen-containing form of Pt can place Pt electrodes on a level competitive with IrOx and PEDOT. Due to its relatively low cost and ease of preparation, PtOx can be a good choice for microfabricated bioelectronic devices. Platinum is used in many medical implants, but lags behind next-generation electrode materials in performance. How sputtered platinum oxide is a microfabricatable thin film material that provides bioelectronics electrodes with volumetric capacitance and low impedance that tweaks platinum to compete at the level of conducting polymers and IrOx is shown. imageen
dc.formattextcs
dc.format.extent7cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationJournal of Interconnection Networks. 2024, vol. 13, issue 5, 7 p.en
dc.identifier.doi10.1002/adhm.202302400cs
dc.identifier.issn2192-2659cs
dc.identifier.orcid0000-0002-0280-8017cs
dc.identifier.other188751cs
dc.identifier.urihttps://hdl.handle.net/11012/249528
dc.language.isoencs
dc.publisherWILEYcs
dc.relation.ispartofJournal of Interconnection Networkscs
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1002/adhm.202302400cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2192-2659/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectbioelectronicsen
dc.subjectbiomedical microdevicesen
dc.subjectelectrochemistryen
dc.subjectplatinumen
dc.subjectreactive sputteringen
dc.titleElevating Platinum to Volumetric Capacitance: High Surface Area Electrodes through Reactive Pt Sputteringen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-188751en
sync.item.dbtypeVAVen
sync.item.insts2024.10.14 11:04:04en
sync.item.modts2024.10.12 10:31:57en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Bioelektronické materiály a systémycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Adv Healthcare Materials2024Gryszel.pdf
Size:
1.34 MB
Format:
Adobe Portable Document Format
Description:
file Adv Healthcare Materials2024Gryszel.pdf