Effective Relative Permittivity Determination of 3D Printed Artificial Dielectric Substrates Based on a Cross Unit Cell

Loading...
Thumbnail Image

Authors

Kadera, Petr
Lacik, Jaroslav
Arthaber, Holger

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

This paper proposes closed-form analytical models for the determination of the effective relative permittivity of 3D printed artificial dielectric substrates based on a cross unit cell. The parallel plate capacitor approach is used to describe the real physical shape of the unit cell allowing to include anisotropic properties as well. A detailed comparison of the analytical models and effective medium approximations is carried out for air host material and inclusion materials with relative permittivities in the range from 2.5 to 1000 and the inclusion volume fraction from 0.1 to 1. It is observed that the proposed models predict the effective relative permittivity with much better accuracy than frequently used effective medium theory-based formulas and due to their closed-form expressions provide faster calculations than numerical methods. The proposed models were verified experimentally, achieving a very good agreement with simulations.

Description

Citation

Radioengineering. 2021 vol. 30, č. 4, s. 595-610. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2021/21_04_0595_0610.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International license
Citace PRO