Hodnocení míry mentální zátěže za použití mozkové konektivity
but.committee | doc. Ing. Jana Kolářová, Ph.D. (předseda) Ing. Martin Vítek, Ph.D. (místopředseda) Ing. Denisa Maděránková, Ph.D. (člen) MUDr. Eva Závodná, Ph.D. (člen) MUDr. Michal Jurajda, Ph.D. (člen) | cs |
but.defence | Studentka prezentovala výsledky své práce a komise byla seznámena s posudky. MUDr. Michal Jurajda, Ph.D. položil otázku: Proč bylo jen 20 pacientů? MUDr. Eva Závodná, Ph.D. položila otázku: Jak dlouho trval protokol měření? Použila jste skalpové elektrody? Ing. Denisa Maděránková položila otázku: Podle čeho jste vybírala kanály EEG? Studentka odpověděla na otázky členů komise. Studentka obhájila diplomovou práci. | cs |
but.jazyk | angličtina (English) | |
but.program | Biomedicínské inženýrství a bioinformatika | cs |
but.result | práce byla úspěšně obhájena | cs |
dc.contributor.advisor | Filipenská, Marina | en |
dc.contributor.author | Doležalová, Radka | en |
dc.contributor.referee | Kolářová, Jana | en |
dc.date.created | 2015 | cs |
dc.description.abstract | Tato práce se zabývá využitím EEG dat pro výpočet mozkové konektivity a vytvořením klasifikátoru mentální zátěže. Nejdříve je popsán teoretický základ EEG, následně jsou rozebrány některé metody pro určení mozkové konektivity. Pro výpočet klasifikačních příznaků byla použita data nasnímaná během experimentu, který manipuloval s mentální zátěží ve dvou stupních. V práci je popsán průběh experimentu, zpracování a redukce nasnímaných dat, stejně jako extrakce příznaků z nasnímaných EEG dat pomocí několika metod měření konektivity (korelační funkce, kovariance, koherence a míra fázové soudržnosti) a následná automatická klasifikace třemi způsoby (na základě vzdálenosti od vzoru tvořeného průměrem, metoda nejbližšího souseda a diskriminační alanýza). Dosažené výsledky jsou detailně popsány a diskutovány. Nejlepšího výsledku (úspěšnost 60,64%) bylo dosaženo při použití kovarianční matice určené z dat získaných ze 4 elektrod z různých mozkových oblastí (beta pásmo EEG) při klasifikaci založené na lineární diskriminační funkci. | en |
dc.description.abstract | This thesis deals with possibilities of using EEG connectivity measures for automatic classification of mental workload levels. The theoretical principles of EEG recording and different measures of brain connectivity are discussed at the beginning. Two different levels of mental workload were evoked in healthy participants during real experiments. The course of experiment, processing of recorded EEG, as well as extraction of classification features from EEG based on some connectivity measures (such as cross-correlation, covariance, coherence and phase locking value), and automatic classification approaches (classification based on distance from average, 1-nearestneighbor searching and discriminant analysis) were then described. Obtained results were interpreted and discussed. The best classification accuracy (approx. 60,64%) was obtained using beta band of EEG recorded with 4 channels from different scalp, when features were classified with linear discriminant function. | cs |
dc.description.mark | A | cs |
dc.identifier.citation | DOLEŽALOVÁ, R. Hodnocení míry mentální zátěže za použití mozkové konektivity [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2015. | cs |
dc.identifier.other | 84410 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/42799 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights | Standardní licenční smlouva - přístup k plnému textu bez omezení | cs |
dc.subject | EEG | en |
dc.subject | klasifikace mentální zátěže | en |
dc.subject | měření mozkové konektivity | en |
dc.subject | korelace | en |
dc.subject | kovariance | en |
dc.subject | koherence | en |
dc.subject | míra fázové soudržnosti. | en |
dc.subject | EEG | cs |
dc.subject | automatic classification of mental workload | cs |
dc.subject | brain connectivity measure | cs |
dc.subject | cross-correlation | cs |
dc.subject | covariance | cs |
dc.subject | coherence | cs |
dc.subject | phase locking value. | cs |
dc.title | Hodnocení míry mentální zátěže za použití mozkové konektivity | en |
dc.title.alternative | Classification of mental workload using brain connectivity measure | cs |
dc.type | Text | cs |
dc.type.driver | masterThesis | en |
dc.type.evskp | diplomová práce | cs |
dcterms.dateAccepted | 2015-08-28 | cs |
dcterms.modified | 2015-09-04-08:09:41 | cs |
eprints.affiliatedInstitution.faculty | Fakulta elektrotechniky a komunikačních technologií | cs |
sync.item.dbid | 84410 | en |
sync.item.dbtype | ZP | en |
sync.item.insts | 2025.03.26 13:20:58 | en |
sync.item.modts | 2025.01.15 12:39:01 | en |
thesis.discipline | Biomedicínské inženýrství a bioinformatika | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav biomedicínského inženýrství | cs |
thesis.level | Inženýrský | cs |
thesis.name | Ing. | cs |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- final-thesis.pdf
- Size:
- 2.98 MB
- Format:
- Adobe Portable Document Format
- Description:
- final-thesis.pdf
Loading...
- Name:
- review_84410.html
- Size:
- 5.48 KB
- Format:
- Hypertext Markup Language
- Description:
- file review_84410.html