Statistická analýza dat z geologického průzkumu

but.committeeprof. RNDr. Zdeněk Pospíšil, Dr. (předseda) prof. Mgr. Pavel Řehák, Ph.D. (místopředseda) doc. Mgr. Zuzana Hübnerová, Ph.D. (člen) doc. Mgr. Zdeněk Opluštil, Ph.D. (člen) doc. Mgr. Jaroslav Hrdina, Ph.D. (člen)cs
but.defenceThe student has presented her thesis. The supervisor and the reviewer have read the reports. The committee asked questions from the reviewers report. The student commented on these questions as well as minor follow-up questions. There were no other questions.cs
but.jazykangličtina (English)
but.programMathematical Engineeringcs
but.resultpráce byla úspěšně obhájenacs
dc.contributor.advisorHübnerová, Zuzanaen
dc.contributor.authorTunali, Ceydaen
dc.contributor.refereeHrabec, Pavelen
dc.date.created2025cs
dc.description.abstractThis study investigates the dynamic relationship between atmospheric carbon dioxide (CO2) concentrations and a set of meteorological variables using time series analysis. Hourly CO2 measurements and meteorological data (temperature, pressure, humidity, wind speed and direction, cloud cover, and precipitation) collected over a three-year period were aggregated to daily values and analyzed using transfer function modeling techniques. Two distinct methodological approaches were applied: a classical Box–Jenkins transfer function model with prewhitening, and a multi-input lagged regression model without prewhitening. Preprocessing techniques including Box–Cox transformation, harmonic regression, andseasonal smoothing were implemented to ensure stationarity and improve model performance. In the prewhitened approach, significant lags were first identified via cross-correlation analysis, and an AR(2) structure was incorporated into the regression residuals to address temporal autocorrelation. In contrast, the non-prewhitened model directly incorporated all lagged predictors within an ARIMA(0,0,1) framework. Comparative diagnostics revealed that the prewhitened model exhibited superior residual behavior, with reduced autocorrelation and improved interpretability of lagged effects. The findings emphasize the methodological importance of prewhitening in transfer function modeling, particularly for environmental time series characterized by complex internal structure. The results offer practical insight into how meteorological dynamics influence short-term variations in CO2 levels and provide a robust foundation for future modeling and forecasting efforts.en
dc.description.abstractThis study investigates the dynamic relationship between atmospheric carbon dioxide (CO2) concentrations and a set of meteorological variables using time series analysis. Hourly CO2 measurements and meteorological data (temperature, pressure, humidity, wind speed and direction, cloud cover, and precipitation) collected over a three-year period were aggregated to daily values and analyzed using transfer function modeling techniques. Two distinct methodological approaches were applied: a classical Box–Jenkins transfer function model with prewhitening, and a multi-input lagged regression model without prewhitening. Preprocessing techniques including Box–Cox transformation, harmonic regression, andseasonal smoothing were implemented to ensure stationarity and improve model performance. In the prewhitened approach, significant lags were first identified via cross-correlation analysis, and an AR(2) structure was incorporated into the regression residuals to address temporal autocorrelation. In contrast, the non-prewhitened model directly incorporated all lagged predictors within an ARIMA(0,0,1) framework. Comparative diagnostics revealed that the prewhitened model exhibited superior residual behavior, with reduced autocorrelation and improved interpretability of lagged effects. The findings emphasize the methodological importance of prewhitening in transfer function modeling, particularly for environmental time series characterized by complex internal structure. The results offer practical insight into how meteorological dynamics influence short-term variations in CO2 levels and provide a robust foundation for future modeling and forecasting efforts.cs
dc.description.markDcs
dc.identifier.citationTUNALI, C. Statistická analýza dat z geologického průzkumu [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2025.cs
dc.identifier.other165579cs
dc.identifier.urihttp://hdl.handle.net/11012/252436
dc.language.isoencs
dc.publisherVysoké učení technické v Brně. Fakulta strojního inženýrstvícs
dc.rightsStandardní licenční smlouva - přístup k plnému textu bez omezenícs
dc.subjectTime Series Analysisen
dc.subjectTransfer Function Modelsen
dc.subjectPrewhiteningen
dc.subjectARIMAen
dc.subjectCross-Correlationen
dc.subjectBox-Cox Transformationen
dc.subjectHarmonic Regressionen
dc.subjectAutocorrelationen
dc.subjectTime Series Analysiscs
dc.subjectTransfer Function Modelscs
dc.subjectPrewhiteningcs
dc.subjectARIMAcs
dc.subjectCross-Correlationcs
dc.subjectBox-Cox Transformationcs
dc.subjectHarmonic Regressioncs
dc.subjectAutocorrelationcs
dc.titleStatistická analýza dat z geologického průzkumuen
dc.title.alternativeStatistical analysis of geological survey datacs
dc.typeTextcs
dc.type.drivermasterThesisen
dc.type.evskpdiplomová prácecs
dcterms.dateAccepted2025-06-13cs
dcterms.modified2025-06-16-12:25:10cs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
sync.item.dbid165579en
sync.item.dbtypeZPen
sync.item.insts2025.08.27 02:57:29en
sync.item.modts2025.08.26 19:35:44en
thesis.disciplinebez specializacecs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematikycs
thesis.levelInženýrskýcs
thesis.nameIng.cs

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
final-thesis.pdf
Size:
910.42 KB
Format:
Adobe Portable Document Format
Description:
file final-thesis.pdf
Loading...
Thumbnail Image
Name:
appendix-1.zip
Size:
10.89 KB
Format:
Unknown data format
Description:
file appendix-1.zip
Loading...
Thumbnail Image
Name:
review_165579.html
Size:
10.96 KB
Format:
Hypertext Markup Language
Description:
file review_165579.html

Collections