Kontrolovaná excitace magnonů prostřednictvím opticky indukovaných Mie rezonancí v periodických dielektrických nanostrukturách
Loading...
Date
Authors
Krčma, Jakub
ORCID
Advisor
Referee
Mark
A
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta strojního inženýrství
Abstract
Magnonika je vědní disciplína zabývající se manipulací a šířením kolektivních magnetických oscilací nazývaných spinové vlny a jejich kvazičásticemi magnony. Hlavní potenciál zařízení využívajících spinových vln je v oblasti informačních technologií, a to díky nízké energetické náročnosti a vysokým operačním frekvencím. Pro miniaturizaci těchto magnonických zařízení a dosažení vysoké energetické úspornosti je potřeba přejít ke spinovým vlnám s krátkými vlnovými délkami. Jediná experimentální technika umožňující přímé měření a zobrazování takovýchto spinových vln je rentgenová mikroskopie. Ta ovšem vyžaduje synchrotronové záření, což z ní dělá metodu časově I finančně náročnou. Hledají se proto způsoby, jak rozšířit běžně využívanou a jednodušeji dostupnou metodu spektroskopie a mikroskopie Brillouinova rozptylu světla o detekci magnonů s vysokými vlnovými čísly. V posledních letech jsme předvedli, že pomocí Mieho rezonancí vybuzených v dielektrických strukturách jsme schopni této rozšířené detekce dosáhnout. Tato metoda však stále nedisponuje rozlišením vlnových čísel. V této práci jsme ukázali, že zavedením periodičnosti do těchto dielektrických struktur dokážeme nejen měřit magnony s vlnovými čísly až 157 rad/µm (odpovídá vlnové délce 40 nm), ale zároveň dosáhnout rozlišení vlnových vektorů. To přesahuje možnosti stávajících charakterizačních technik a otevírá nové možnosti například při studiu nelineárních jevů nebo zařízení na bázi skyrmionů.
Magnonics is a research field which explores the manipulation and propagation of magnetic excitations called spin waves and their quantum counterparts magnons. It holds promise for improving computing and information processing with the prospect of reduced energy requirements and faster operation. A transition to shorter-wavelength spin waves is necessary for device miniaturization and, consequently, reduced power consumption. Currently, the only technique for direct measurement and imaging of nanoscale spin waves is x-ray microscopy, which relies on synchrotron radiation and is very time- and resource-demanding. Therefore, methods are being investigated to extend the commonly used and more easily accessible technique of Brillouin light scattering microscopy and spectroscopy to detect magnons with high wavenumbers. In recent years, we demonstrated that by optically inducing Mie resonances in dielectric structures, we are able to achieve detection of extended magnon wavenumbers. Even though this method allowed measurement of the nanoscale spin waves, wavevector resolution was not achieved. In this work, we have shown, that by introducing periodicity into these dielectric structures, we can not only measure magnons with wavenumbers up to 157 rad/µm (corresponding wavelength is 40 nm), but also achieve wavevector resolution. This exceeds the capabilities of existing characterization techniques and opens up new possibilities, for example, in the study of nonlinear phenomena or skyrmion devices.
Magnonics is a research field which explores the manipulation and propagation of magnetic excitations called spin waves and their quantum counterparts magnons. It holds promise for improving computing and information processing with the prospect of reduced energy requirements and faster operation. A transition to shorter-wavelength spin waves is necessary for device miniaturization and, consequently, reduced power consumption. Currently, the only technique for direct measurement and imaging of nanoscale spin waves is x-ray microscopy, which relies on synchrotron radiation and is very time- and resource-demanding. Therefore, methods are being investigated to extend the commonly used and more easily accessible technique of Brillouin light scattering microscopy and spectroscopy to detect magnons with high wavenumbers. In recent years, we demonstrated that by optically inducing Mie resonances in dielectric structures, we are able to achieve detection of extended magnon wavenumbers. Even though this method allowed measurement of the nanoscale spin waves, wavevector resolution was not achieved. In this work, we have shown, that by introducing periodicity into these dielectric structures, we can not only measure magnons with wavenumbers up to 157 rad/µm (corresponding wavelength is 40 nm), but also achieve wavevector resolution. This exceeds the capabilities of existing characterization techniques and opens up new possibilities, for example, in the study of nonlinear phenomena or skyrmion devices.
Description
Citation
KRČMA, J. Kontrolovaná excitace magnonů prostřednictvím opticky indukovaných Mie rezonancí v periodických dielektrických nanostrukturách [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2024.
Document type
Document version
Date of access to the full text
Language of document
cs
Study field
bez specializace
Comittee
prof. RNDr. Tomáš Šikola, CSc. (předseda)
prof. RNDr. Jiří Spousta, Ph.D. (místopředseda)
prof. RNDr. Radim Chmelík, Ph.D. (člen)
prof. RNDr. Petr Dub, CSc. (člen)
prof. Ing. Jan Čechal, Ph.D. (člen)
prof. Ing. Miroslav Kolíbal, Ph.D. (člen)
doc. Mgr. Vlastimil Křápek, Ph.D. (člen)
doc. Ing. Stanislav Průša, Ph.D. (člen)
doc. Ing. Radek Kalousek, Ph.D. (člen)
doc. Ing. Miroslav Bartošík, Ph.D. (člen)
RNDr. Antonín Fejfar, CSc. (člen)
Date of acceptance
2024-06-14
Defence
Po otázkách oponenta bylo dále diskutováno:
Student na otázky odpověděl.
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení