Flexible aqueous Zn–S battery based on an S-decorated Ti3C2Tx cathode
Loading...
Date
Authors
Sonigara, Kevalkumar Kishorbhai
Vaghasiya, Jayraj Vinubhai
Mayorga-Martinez, Carmen C.
Pumera, Martin
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Nature
ORCID
Altmetrics
Abstract
Flexible aqueous zinc-ion batteries can store energy safely and at a low cost, which benefits wearable electronic gadgets; however, currently used cathodes restrict these devices with a low specific capacity and energy density. Herein, we developed a flexible zinc-sulfur (Zn-S) battery constructed by Ti3C2Tx decorated with sulfur (S@Ti3C2Tx) as a cathode and Zn metal anode with iodine-added amphiphilic gel electrolyte (AGE). Benefiting from the confinement synergy of S@Ti3C2Tx cathode, the Zn-S battery exhibited a high storage capacity of 772.7 mAh g(-1) at 300 mA g(-1), which is higher than a conventional S-decorated carbon cathode (491.7 mAh g(-1)). More specially, the flexible device offers good cycling stability (82.7%) and excellent mechanical stability with 91% capacity retention after 90 & DEG; bending (500 cycles). To demonstrate real applications, the flexible Zn-S batteries were integrated in series to power electrical gadgets (e.g., digital clock, light-emitting diode, and robot). It exhibits exceptional flexibility to sustain different deformations and maintains a steady supply of power to run the wearable electronic gadget. These findings offer a fresh starting point for flexible energy storage technologies and show the promising potential of the Zn-S battery in real-world applications.
Flexible aqueous zinc-ion batteries can store energy safely and at a low cost, which benefits wearable electronic gadgets; however, currently used cathodes restrict these devices with a low specific capacity and energy density. Herein, we developed a flexible zinc-sulfur (Zn-S) battery constructed by Ti3C2Tx decorated with sulfur (S@Ti3C2Tx) as a cathode and Zn metal anode with iodine-added amphiphilic gel electrolyte (AGE). Benefiting from the confinement synergy of S@Ti3C2Tx cathode, the Zn-S battery exhibited a high storage capacity of 772.7 mAh g(-1) at 300 mA g(-1), which is higher than a conventional S-decorated carbon cathode (491.7 mAh g(-1)). More specially, the flexible device offers good cycling stability (82.7%) and excellent mechanical stability with 91% capacity retention after 90 & DEG; bending (500 cycles). To demonstrate real applications, the flexible Zn-S batteries were integrated in series to power electrical gadgets (e.g., digital clock, light-emitting diode, and robot). It exhibits exceptional flexibility to sustain different deformations and maintains a steady supply of power to run the wearable electronic gadget. These findings offer a fresh starting point for flexible energy storage technologies and show the promising potential of the Zn-S battery in real-world applications.
Flexible aqueous zinc-ion batteries can store energy safely and at a low cost, which benefits wearable electronic gadgets; however, currently used cathodes restrict these devices with a low specific capacity and energy density. Herein, we developed a flexible zinc-sulfur (Zn-S) battery constructed by Ti3C2Tx decorated with sulfur (S@Ti3C2Tx) as a cathode and Zn metal anode with iodine-added amphiphilic gel electrolyte (AGE). Benefiting from the confinement synergy of S@Ti3C2Tx cathode, the Zn-S battery exhibited a high storage capacity of 772.7 mAh g(-1) at 300 mA g(-1), which is higher than a conventional S-decorated carbon cathode (491.7 mAh g(-1)). More specially, the flexible device offers good cycling stability (82.7%) and excellent mechanical stability with 91% capacity retention after 90 & DEG; bending (500 cycles). To demonstrate real applications, the flexible Zn-S batteries were integrated in series to power electrical gadgets (e.g., digital clock, light-emitting diode, and robot). It exhibits exceptional flexibility to sustain different deformations and maintains a steady supply of power to run the wearable electronic gadget. These findings offer a fresh starting point for flexible energy storage technologies and show the promising potential of the Zn-S battery in real-world applications.
Description
Keywords
Citation
npj 2D Materials and Applications. 2023, vol. 7, issue 1, p. 1-9.
https://www.nature.com/articles/s41699-023-00411-2
https://www.nature.com/articles/s41699-023-00411-2
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

0000-0001-5846-2951 