Using Wi-Fi Signals from Mobile Devices to Determine Characteristics of Pedestrian Behavior in Public Spaces

dc.contributor.authorŠimara, Evacs
dc.contributor.authorKilnarová, Pavlacs
dc.contributor.authorPalacký, Jiřícs
dc.contributor.authorVašut, Radkacs
dc.coverage.issue2cs
dc.coverage.volume2675cs
dc.date.accessioned2021-02-22T15:56:21Z
dc.date.available2021-02-22T15:56:21Z
dc.date.issued2020-11-09cs
dc.description.abstractThis paper presents an investigation into automated data collection, applied to pedestrians in public spaces. Three case studies conducted in Brno, Czech Republic, a typical, medium-sized city in Central Europe, were used to determine the accuracy of the proposed method. Data were recorded in two ways: (i) automated data collection, using a data logger constructed on the principle of a minicomputer to measure the intensity of Wi-Fi signals from mobile devices; and (ii) in situ observation. Data from in situ observation provided a basis for the comparison and verification of corresponding values from the automated data collection. The research framework of the paper comprises the determination of exact values for optimum characterization of pedestrian behavior in a given locality, taking into consideration conventions from previously published works: (i) the number of pedestrians (N); (ii) speed (u); (iii) flow (q); and (iv) density (k). The results of this study confirm that as the density of the street network increases, the accuracy of the data collected by the digital method decreases significantly. These findings indicate that the method is more suitable for projects focused on identifying major trends or shifts in pedestrian preferences when navigating city centers than for projects that require exact counts in specific locations at a given time.en
dc.formattextcs
dc.format.extent187-197cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationTRANSPORTATION RESEARCH RECORD. 2020, vol. 2675, issue 2, p. 187-197.en
dc.identifier.doi10.1177/0361198120961096cs
dc.identifier.issn0361-1981cs
dc.identifier.other161963cs
dc.identifier.urihttp://hdl.handle.net/11012/196350
dc.language.isoencs
dc.publisherSAGE Publications Ltdcs
dc.relation.ispartofTRANSPORTATION RESEARCH RECORDcs
dc.relation.urihttps://doi.org/10.1177/0361198120961096cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0361-1981/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectPedestriansen
dc.subjectSpeeden
dc.subjectDensityen
dc.subjectAutomatic Wi-Fi data collectionen
dc.titleUsing Wi-Fi Signals from Mobile Devices to Determine Characteristics of Pedestrian Behavior in Public Spacesen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionacceptedVersionen
sync.item.dbidVAV-161963en
sync.item.dbtypeVAVen
sync.item.insts2021.04.07 20:53:56en
sync.item.modts2021.04.07 20:14:14en
thesis.grantorVysoké učení technické v Brně. Fakulta architektury. Ústav urbanismucs
thesis.grantorVysoké učení technické v Brně. Fakulta architektury. Ústav prostorové tvorbycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0361198120961096_accepted.pdf
Size:
400.88 KB
Format:
Adobe Portable Document Format
Description:
0361198120961096_accepted.pdf