Analysis of Fired Equipment within the Framework of Low-Cost Modelling Systems

Loading...
Thumbnail Image

Authors

Babička Fialová, Dominika
Jegla, Zdeněk

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI AG
Altmetrics

Abstract

Fired equipment suffers from local overloading and fouling of heat transfer surfaces, products are not of the required quality, and operating costs are increased due to the high pressure drop of process fluids. Such operational issues are affected by the non-uniform distribution of fluid flow and heat flux variability. Detailed numerical analyses are often applied to troubleshoot these problems. However, is this common practice effective? Is it not better to prevent problems from occurring by using quality equipment design? It is, according to the general consensus. Still, the experience of designing fired apparatuses reveals that the established standards do not reflect the real maldistribution sufficiently. In addition, as found from the given overview of modelling approaches, the radiant chamber and the convection section are usually analysed separately without significant continuity. A comprehensive framework is hence introduced. The proposed procedure clearly defines the interconnection of traditional thermal-hydraulic calculations and low-cost modelling systems for radiant and convection sections. A suitable combination of simplified methods allows for the reliable design of complex equipment and fast identification of problematic areas. The utilisation of selected low-cost models, i.e., the second phase of the systematic framework, is presented regarding the example of a steam boiler.
Fired equipment suffers from local overloading and fouling of heat transfer surfaces, products are not of the required quality, and operating costs are increased due to the high pressure drop of process fluids. Such operational issues are affected by the non-uniform distribution of fluid flow and heat flux variability. Detailed numerical analyses are often applied to troubleshoot these problems. However, is this common practice effective? Is it not better to prevent problems from occurring by using quality equipment design? It is, according to the general consensus. Still, the experience of designing fired apparatuses reveals that the established standards do not reflect the real maldistribution sufficiently. In addition, as found from the given overview of modelling approaches, the radiant chamber and the convection section are usually analysed separately without significant continuity. A comprehensive framework is hence introduced. The proposed procedure clearly defines the interconnection of traditional thermal-hydraulic calculations and low-cost modelling systems for radiant and convection sections. A suitable combination of simplified methods allows for the reliable design of complex equipment and fast identification of problematic areas. The utilisation of selected low-cost models, i.e., the second phase of the systematic framework, is presented regarding the example of a steam boiler.

Description

Citation

Energies. 2019, vol. 12, issue 3, p. 520:1-520:17.
https://www.mdpi.com/1996-1073/12/3/520

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO