Characterizing Scalar Metasurfaces Using Time-Domain Reflectometry

Loading...
Thumbnail Image

Authors

Doležal, Tomáš
Kadlec, Petr
Štumpf, Martin

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE
Altmetrics

Abstract

Two efficient methodologies for the determination of electromagnetic (EM) constitutive properties of scalar metasurfaces are introduced and discussed. In contrast to the available methods, and in line with the recent increasing interest in time-domain (TD) analyses of metasurfaces, we show that the material parameters of a scalar metasurface can be readily achieved directly in the TD merely from the EM reflected pulse shape. The two methodologies are based on an analytical TD reflectometry (TDR) approach and a modern stochastic optimization technique. A number of illustrative numerical examples demonstrating the validity and properties of the proposed techniques are presented.
Two efficient methodologies for the determination of electromagnetic (EM) constitutive properties of scalar metasurfaces are introduced and discussed. In contrast to the available methods, and in line with the recent increasing interest in time-domain (TD) analyses of metasurfaces, we show that the material parameters of a scalar metasurface can be readily achieved directly in the TD merely from the EM reflected pulse shape. The two methodologies are based on an analytical TD reflectometry (TDR) approach and a modern stochastic optimization technique. A number of illustrative numerical examples demonstrating the validity and properties of the proposed techniques are presented.

Description

Citation

IEEE Access. 2022, vol. 10, issue 1, p. 9677-9685.
https://ieeexplore.ieee.org/document/9686750

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO