Realtime Pedestrian Recognition Using Siamese Network

Loading...
Thumbnail Image

Date

Authors

Rajnoha, Martin

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Abstract

Image similarity measuring has many various applications. Pedestrian recognition is one of them and for the security purposes it is basically required to run in real-time. This paper proposes a deep Siamese neural network architecture for pedestrian recognition that achieves 70.28% accuracy on the test set containing 20 persons. Prediction of the model is fast enough for real-time processing.

Description

Citation

Proceedings of the 24th Conference STUDENT EEICT 2018. s. 441-445. ISBN 978-80-214-5614-3
http://www.feec.vutbr.cz/EEICT/

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

DOI

Endorsement

Review

Supplemented By

Referenced By

Citace PRO