Classification of Ground Targets Based on Radar Micro-Doppler Signatures Using Deep Learning and Conventional Supervised Learning Methods

Loading...
Thumbnail Image

Authors

Cao, Peibei
Xia, Weijie
Li, Yi

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

Radar has great potential in military and civilian areas, including automobile anti-collision, battlefield surveillance, etc., due to its high penetration and all-weather capability. On the basis of traditional targets detection, targets classification can be realized. In this paper, a comparison of targets classification between deep learning (Deep Convolutional Neural Networks (DCNNs)) and conventional supervised learning methods (Support Vector Machine (SVM), Naive Bayes (NB) and SVM-Bayes fusion algorithm) has been made. Furthermore, several factors affecting the accuracy of classifying targets including SNR, decrease of samples, have been researched and discussed. We employ a K-band Doppler radar to acquire the raw signal due to its stationary clutter-rejection, movement detection ability and short wavelength. Then Short-time Fourier Transform (STFT) is applied to the raw signal to characterize micro-Doppler signatures which is the fundament of the classification process. We adopt the DCNNs to deal with the spectrograms directly, while features have been designed and extracted for classification with conventional supervised learning methods. It is shown that the DCNN can achieve average accuracy approximately 99.4% followed by SVM-Bayes fusion algorithm reaching around 95.8%, while the accuracy for SVM and NB is about 94.4% and 91% respectively.

Description

Citation

Radioengineering. 2018 vol. 27, č. 3, s. 835-845. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2018/18_03_0835_0845.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International license
Citace PRO