METHODS TO MEASURE THERMAL DEPOLARIZATION EFFECTS IN PIEZOELECTRIC RING ELEMENTS FOR KNOCK SENSORS

Loading...
Thumbnail Image

Authors

Fialka, Jiří
Klusáček, Stanislav
Havránek, Zdeněk
Beneš, Petr

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Society of Acoustics

Abstract

Knock sensors use piezoelectric ceramics as the active element, whose parameters can change over time due to ambient conditions. One of the major environmental impacts on the sensor – its internal active element in particular – is that of the temperature. The knock sensor is placed directly on the device to be examined, such as the automobile engine block or the combustion engines in biogas cogeneration (CHP) units. In these units, above all, the temperature of the engine block often exceeds 100 °C. Prolonged exposure of the sensor to such conditions can damage the protective housing; more important, however, is the partial depolarization of the piezomaterial inside the sensor. We employed the frequency and the direct charge coefficient methods to determine how the temperature affects the parameters of the ring piezoelectric ce-ramics. The frequency approach allows us to establish the resonance frequency and the electrome-chanical coefficient, facilitating partial evaluation of quality in the piezoceramics. The tech-nique nevertheless cannot be used in deriving the relevant piezoelectric charge coefficient. If paired with the direct method, the procedure will characterize the stability of the resonance frequency and the depolarization level in the ring being tested. In the experiment, the CeramTec's Sonox P502 material was inserted directly into the knock sensors. The stability of the resonance frequency was assessed by using an Agilent 4294a im-pedance analyser. Subsequently, the samples were measured via the direct method to quantify the piezoelectric charge coefficient. The experiment yielded a comprehensive description of the impact exerted by a thermal wave on the active elements of a knock sensor; moreover, we identified convenient methods to de-termine the parameters of a set of samples in terms of the operational quality and suitability.
Knock sensors use piezoelectric ceramics as the active element, whose parameters can change over time due to ambient conditions. One of the major environmental impacts on the sensor – its internal active element in particular – is that of the temperature. The knock sensor is placed directly on the device to be examined, such as the automobile engine block or the combustion engines in biogas cogeneration (CHP) units. In these units, above all, the temperature of the engine block often exceeds 100 °C. Prolonged exposure of the sensor to such conditions can damage the protective housing; more important, however, is the partial depolarization of the piezomaterial inside the sensor. We employed the frequency and the direct charge coefficient methods to determine how the temperature affects the parameters of the ring piezoelectric ce-ramics. The frequency approach allows us to establish the resonance frequency and the electrome-chanical coefficient, facilitating partial evaluation of quality in the piezoceramics. The tech-nique nevertheless cannot be used in deriving the relevant piezoelectric charge coefficient. If paired with the direct method, the procedure will characterize the stability of the resonance frequency and the depolarization level in the ring being tested. In the experiment, the CeramTec's Sonox P502 material was inserted directly into the knock sensors. The stability of the resonance frequency was assessed by using an Agilent 4294a im-pedance analyser. Subsequently, the samples were measured via the direct method to quantify the piezoelectric charge coefficient. The experiment yielded a comprehensive description of the impact exerted by a thermal wave on the active elements of a knock sensor; moreover, we identified convenient methods to de-termine the parameters of a set of samples in terms of the operational quality and suitability.

Description

Citation

Proceedings of the 28th International Congress on Sound and Vibration. 2022, p. 1-8.
https://www.iiav.org/icsv28/indexc03b.html?va=viewpage&vaid=247

Document type

Document version

Accepted version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

DOI

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
Citace PRO