Experimental Study on Spray Breakup in Turbulent Atomization Using a Spiral Nozzle

dc.contributor.authorKrištof, Ondřejcs
dc.contributor.authorBulejko, Pavelcs
dc.contributor.authorSvěrák, Tomášcs
dc.coverage.issue12cs
dc.coverage.volume7cs
dc.date.accessioned2020-08-04T11:02:35Z
dc.date.available2020-08-04T11:02:35Z
dc.date.issued2019-12-03cs
dc.description.abstractSpiral nozzles are widely used in wet scrubbers to form an appropriate spray pattern to capture the polluting gas/particulate matterwith the highest possible efficiency. Despite this fact, and a fact that it is a nozzle with a very atypical spray pattern (a full cone consisting of three concentric hollow cones), very limited amount of studies have been done so far on characterization of this type of nozzle. This work reports preliminary results on the spray characteristics of a spiral nozzle used for gas absorption processes. First, we experimentally measured the pressure impact footprint of the spray generated. Then effective spray angles were evaluated from the photographs of the spray and using the pressure impact footprint records via Archimedean spiral equation. Using the classical photography, areas of primary and secondary atomization were determined together with the droplet size distribution, which were further approximated using selected distribution functions. Radial and tangential spray velocity of droplets were assessed using the laser Doppler anemometry. The results show atypical behavior compared to different types of nozzles. In the investigated measurement range, the droplet-size distribution showed higher droplet diameters (about 1 mm) compared to, for example, air assisted atomizers. It was similar for the radial velocity, which was conversely lower (max velocity of about 8 m/s) compared to, for example, effervescent atomizers, which can produce droplets with a velocity of tens to hundreds m/s. On the contrary, spray angle ranged from 58 degrees and 111 degrees for the inner small and large cone, respectively, to 152 degrees for the upper cone, and in the measured range was independent of the inlet pressure of liquid at the nozzle orifice.en
dc.formattextcs
dc.format.extent1-25cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationProcesses. 2019, vol. 7, issue 12, p. 1-25.en
dc.identifier.doi10.3390/pr7120911cs
dc.identifier.issn2227-9717cs
dc.identifier.other160550cs
dc.identifier.urihttp://hdl.handle.net/11012/184676
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofProcessescs
dc.relation.urihttps://www.mdpi.com/2227-9717/7/12/911/htmcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2227-9717/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectSpiral nozzleen
dc.subjectsprayen
dc.subjectatomizationen
dc.subjectdroplet sizeen
dc.subjectdroplet velocityen
dc.titleExperimental Study on Spray Breakup in Turbulent Atomization Using a Spiral Nozzleen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-160550en
sync.item.dbtypeVAVen
sync.item.insts2020.08.04 13:02:35en
sync.item.modts2020.08.04 12:15:11en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. EÚ-odbor energetického inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Laboratoř přenosu tepla a prouděnícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
processes0700911.pdf
Size:
12.74 MB
Format:
Adobe Portable Document Format
Description:
processes0700911.pdf