High-energy ball milling and spark plasma sintering of molybdenum - lanthanum oxide (Mo-La2O3) and molybdenum - lanthanum zirconate (Mo-La2Zr2O7) composite powders

Loading...
Thumbnail Image

Authors

Čelko, Ladislav
Tkachenko, Serhii
Casas Luna, Mariano
Dyčková, Lucie
Bednaříková, Vendula
Remešová, Michaela
Komarov, Pavel
Deák, Andréa
Baláž, Matej
Crawford, Deborah E.

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

The current study is focused on the preparation of Mo-10 vol%La2O3 and Mo-10 vol% La2Zr2O7 composite powders via low- and high-energy ball milling approaches as potential candidates for near-future high-temperature structural applications. The mechanical milling parameters play a critical role on the final powder's microstructure. When using the high-energy milling mode (using 800 rpm, ball-to-powder ratio (BPR) 100: 6), the homogeneous powder agglomerates are formed with refined laminated microstructure and more uniform ceramic phase distribution in both Mo-La2O3 and Mo-La2Zr2O7 systems compared to the powders produced by means of the low-energy milling mode (using 350 rpm, BPR 100: 6), where inhomogeneous powder mixture with less embedding of ceramic phases into Mo agglomerates was obtained. This study also focuses on the evaluation of high-temperature phase and microstructural stability of the produced composite powders treated at the temperature of 1300 degrees C under the different gaseous environments, including ambient, inert and reducing atmospheres. The Mo-10 vol% La2Zr2O7 composite powder exhibited better thermal stability during the high-temperature exposure in all tested atmospheres in comparison with the Mo-La2O3 composite powder, since it revealed less intensive formation of the intermediate phases, such as lanthanum oxymolybdates. Therefore, the Mo-10 vol%La2Zr2O7 composite powder was used further for consolidation by means of spark plasma sintering at 1600 degrees C. The successful production of Mo-La2Zr2O7 composite with homogeneous distribution of ceramic phase, the grain size about of 5 mu m, and hardness of 3.4 GPa was not reported so far.
The current study is focused on the preparation of Mo-10 vol%La2O3 and Mo-10 vol% La2Zr2O7 composite powders via low- and high-energy ball milling approaches as potential candidates for near-future high-temperature structural applications. The mechanical milling parameters play a critical role on the final powder's microstructure. When using the high-energy milling mode (using 800 rpm, ball-to-powder ratio (BPR) 100: 6), the homogeneous powder agglomerates are formed with refined laminated microstructure and more uniform ceramic phase distribution in both Mo-La2O3 and Mo-La2Zr2O7 systems compared to the powders produced by means of the low-energy milling mode (using 350 rpm, BPR 100: 6), where inhomogeneous powder mixture with less embedding of ceramic phases into Mo agglomerates was obtained. This study also focuses on the evaluation of high-temperature phase and microstructural stability of the produced composite powders treated at the temperature of 1300 degrees C under the different gaseous environments, including ambient, inert and reducing atmospheres. The Mo-10 vol% La2Zr2O7 composite powder exhibited better thermal stability during the high-temperature exposure in all tested atmospheres in comparison with the Mo-La2O3 composite powder, since it revealed less intensive formation of the intermediate phases, such as lanthanum oxymolybdates. Therefore, the Mo-10 vol%La2Zr2O7 composite powder was used further for consolidation by means of spark plasma sintering at 1600 degrees C. The successful production of Mo-La2Zr2O7 composite with homogeneous distribution of ceramic phase, the grain size about of 5 mu m, and hardness of 3.4 GPa was not reported so far.

Description

Citation

INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS. 2022, vol. 102, issue 1, p. 1-13.
https://www.sciencedirect.com/science/article/pii/S0263436821002493

Document type

Peer-reviewed

Document version

Accepted version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO