A Measurement Set Partitioning Algorithm Based on CFSFDP for Multiple Extended Target Tracking in PHD Filter

dc.contributor.authorGong, Yang
dc.contributor.authorCui, Chen
dc.coverage.issue2cs
dc.coverage.volume30cs
dc.date.accessioned2021-07-12T08:14:54Z
dc.date.available2021-07-12T08:14:54Z
dc.date.issued2021-06cs
dc.description.abstractThe extended target probability hypothesis den¬sity (ET-PHD) filter is a promising approach for multiple extended target tracking. One crucial problem of the ET-PHD filter is partitioning the measurement set. This paper proposes a partitioning algorithm based on clustering by fast search and find density peaks (CFSFDP). Firstly, we adopt CFSFDP algorithm to partition the measurement set and the field theory is introduced to determine the cutoff distance of the CFSFDP algorithm. Then, the cluster center of the CFSFDP algorithm is determined according to solved cutoff distance and measurement rate. Finally, as the CFSFDP algorithm cannot handle the case in which targets are spatially close, an improved sub-partitioning method is implemented. Simulation results show that the proposed algorithm has less computational complexity and stronger robustness than the existing algorithm without losing tracking performance.en
dc.formattextcs
dc.format.extent407-416cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRadioengineering. 2021 vol. 30, č. 2, s. 407-416. ISSN 1210-2512cs
dc.identifier.doi10.13164/re.2021.0407en
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/200455
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttps://www.radioeng.cz/fulltexts/2021/21_02_0407_0416.pdfcs
dc.rightsCreative Commons Attribution 4.0 International licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectProbability hypothesis density filteren
dc.subjectextended target trackingen
dc.subjectmeasurement seten
dc.subjectcutoff distanceen
dc.subjectsub-partitioningen
dc.titleA Measurement Set Partitioning Algorithm Based on CFSFDP for Multiple Extended Target Tracking in PHD Filteren
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
21_02_0407_0416.pdf
Size:
425.88 KB
Format:
Adobe Portable Document Format
Description:
Collections