Elements of Hyperstructure Theory in UWSN Design and Data Aggregation
Loading...
Date
Authors
Novák, Michal
Křehlík, Štěpán
Ovaliadis, Kyriakos
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Altmetrics
Abstract
In our paper we discuss how elements of algebraic hyperstructure theory can be used in the context of underwater wireless sensor networks (UWSN). We present a mathematical model which makes use of the fact that when deploying nodes or operating the network we, from the mathematical point of view, regard an operation (or a hyperoperation) and a binary relation. In this part of the paper we relate our context to already existing topics of the algebraic hyperstructure theory such as quasi-order hypergroups, $EL$-hyperstructures, or ordered hyperstructures. Furthermore, we make use of the theory of quasi-automata (or rather, semiautomata) to relate the process of UWSN data aggregation to the existing algebraic theory of quasi-automata and their hyperstructure generalization. We show that the process of data aggregation can be seen as an automaton, or rather its hyperstructure generalization, with states representing stages of the data aggregation process of cluster protocols and describing available/used memory capacity of the network.
In our paper we discuss how elements of algebraic hyperstructure theory can be used in the context of underwater wireless sensor networks (UWSN). We present a mathematical model which makes use of the fact that when deploying nodes or operating the network we, from the mathematical point of view, regard an operation (or a hyperoperation) and a binary relation. In this part of the paper we relate our context to already existing topics of the algebraic hyperstructure theory such as quasi-order hypergroups, $EL$-hyperstructures, or ordered hyperstructures. Furthermore, we make use of the theory of quasi-automata (or rather, semiautomata) to relate the process of UWSN data aggregation to the existing algebraic theory of quasi-automata and their hyperstructure generalization. We show that the process of data aggregation can be seen as an automaton, or rather its hyperstructure generalization, with states representing stages of the data aggregation process of cluster protocols and describing available/used memory capacity of the network.
In our paper we discuss how elements of algebraic hyperstructure theory can be used in the context of underwater wireless sensor networks (UWSN). We present a mathematical model which makes use of the fact that when deploying nodes or operating the network we, from the mathematical point of view, regard an operation (or a hyperoperation) and a binary relation. In this part of the paper we relate our context to already existing topics of the algebraic hyperstructure theory such as quasi-order hypergroups, $EL$-hyperstructures, or ordered hyperstructures. Furthermore, we make use of the theory of quasi-automata (or rather, semiautomata) to relate the process of UWSN data aggregation to the existing algebraic theory of quasi-automata and their hyperstructure generalization. We show that the process of data aggregation can be seen as an automaton, or rather its hyperstructure generalization, with states representing stages of the data aggregation process of cluster protocols and describing available/used memory capacity of the network.
Description
Citation
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

0000-0003-3309-8748 