Mechanical Reinforcement of Bioglass®-Based Scaffolds

but.committeeprof. Ing. Jiří Švejcar, CSc. (předseda) Prof. Dr.-Ing. habil. Aldo R. Boccaccini (člen) prof. RNDr. Michal Kotoul, DrSc. (člen) prof. Dr. Dipl.-Min. Willi Pabst (člen) prof. RNDr. Jan Kohout, CSc. (člen) prof. Ing. Martin Trunec, Dr. (člen) Ing. Zdeněk Chlup, Ph.D. (člen)cs
but.defenceDosažené výsledky, jejich prezentace, reakce na připomínky oponentů i obecná diskuse jednoznačně prokázaly připravenost doktoranda pro tvůrčí práci. Práce je vysoce inovativní a přinesla řadu originálních výsledků a poznatků, např. použití mikrofibril celulózy na zpevnění polymerních povlaků, objasnění experimentálního i teoretického vlivu polymerního a kompozitního povlaku na zpevnění struktury a lomové chování keramické pěny, změny ve struktuře bioskla, ke kterým dochází v průběhu SPS. Práce přinesla řadu námětů k využití poznatků a dalšímu pokračování.cs
but.jazykangličtina (English)
but.programFyzikální a materiálové inženýrstvícs
but.resultpráce byla úspěšně obhájenacs
dc.contributor.advisorDlouhý, Ivoen
dc.contributor.authorBertolla, Lucaen
dc.contributor.refereeProf. Dr.-Ing. habil. Aldo R. Boccaccinien
dc.contributor.refereeKotoul, Michalen
dc.contributor.refereePabst, Willien
dc.date.created2015cs
dc.description.abstractBioactive glasses exhibit unique characteristics as a material for bone tissue engineering. Unfortunately, their extensive application for the repair of load-bearing bone defects is still limited by low mechanical strength and fracture toughness. The main aim of this work was two-fold: the reinforcement of brittle Bioglass®-based porous scaffolds and the production of bulk Bioglass® samples exhibiting enhanced mechanical properties. For the first task, scaffolds were coated by composite coating constituted by polyvinyl alcohol (PVA) and microfibrillated cellulose (MFC). The addition of PVA/MFC coating led to a 10 fold increase of compressive strength and a 20 fold increase of tensile strength in comparison with non-coated scaffolds. SEM observations of broken struts surfaces proved the reinforcing and toughening mechanism of the composite coating which was ascribed to crack bridging and fracture of cellulose fibrils. The mechanical properties of the coating material were investigated by tensile testing of PVA/MFC stand–alone specimens. The stirring time of the PVA/MFC solution came out as a crucial parameter in order to achieve a more homogeneous dispersion of the fibres and consequently enhanced strength and stiffness. Numerical simulation of a PVA coated Bioglass® strut revealed the infiltration depth of the coating until the crack tip as the most effective criterion for the struts strengthening. Contact angle and linear viscosity measurements of PVA/MFC solutions showed that MFC causes a reduction in contact angle and a drastic increase in viscosity, indicating that a balance between these opposing effects must be achieved. Concerning the production of bulk samples, conventional furnace and spark plasma sintering technique was used. Spark plasma sintering performed without the assistance of mechanical pressure and at heating rates ranging from 100 to 300°C /min led to a material having density close to theoretical one and fracture toughness nearly 4 times higher in comparison with conventional sintering. Fractographic analysis revealed the crack deflection as the main toughening mechanisms acting in the bulk Bioglass®. Time–dependent crack healing process was also observed. The further investigation on the non-equilibrium phases crystallized is required. All obtained results are discussed in detail and general recommendations for scaffolds with enhanced mechanical resistance are served.en
dc.description.abstractBioactive glasses exhibit unique characteristics as a material for bone tissue engineering. Unfortunately, their extensive application for the repair of load-bearing bone defects is still limited by low mechanical strength and fracture toughness. The main aim of this work was two-fold: the reinforcement of brittle Bioglass®-based porous scaffolds and the production of bulk Bioglass® samples exhibiting enhanced mechanical properties. For the first task, scaffolds were coated by composite coating constituted by polyvinyl alcohol (PVA) and microfibrillated cellulose (MFC). The addition of PVA/MFC coating led to a 10 fold increase of compressive strength and a 20 fold increase of tensile strength in comparison with non-coated scaffolds. SEM observations of broken struts surfaces proved the reinforcing and toughening mechanism of the composite coating which was ascribed to crack bridging and fracture of cellulose fibrils. The mechanical properties of the coating material were investigated by tensile testing of PVA/MFC stand–alone specimens. The stirring time of the PVA/MFC solution came out as a crucial parameter in order to achieve a more homogeneous dispersion of the fibres and consequently enhanced strength and stiffness. Numerical simulation of a PVA coated Bioglass® strut revealed the infiltration depth of the coating until the crack tip as the most effective criterion for the struts strengthening. Contact angle and linear viscosity measurements of PVA/MFC solutions showed that MFC causes a reduction in contact angle and a drastic increase in viscosity, indicating that a balance between these opposing effects must be achieved. Concerning the production of bulk samples, conventional furnace and spark plasma sintering technique was used. Spark plasma sintering performed without the assistance of mechanical pressure and at heating rates ranging from 100 to 300°C /min led to a material having density close to theoretical one and fracture toughness nearly 4 times higher in comparison with conventional sintering. Fractographic analysis revealed the crack deflection as the main toughening mechanisms acting in the bulk Bioglass®. Time–dependent crack healing process was also observed. The further investigation on the non-equilibrium phases crystallized is required. All obtained results are discussed in detail and general recommendations for scaffolds with enhanced mechanical resistance are served.cs
dc.description.markPcs
dc.identifier.citationBERTOLLA, L. Mechanical Reinforcement of Bioglass®-Based Scaffolds [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2015.cs
dc.identifier.other89494cs
dc.identifier.urihttp://hdl.handle.net/11012/51852
dc.language.isoencs
dc.publisherVysoké učení technické v Brně. Fakulta strojního inženýrstvícs
dc.rightsStandardní licenční smlouva - přístup k plnému textu bez omezenícs
dc.subjectbioactive glassen
dc.subjectscaffoldsen
dc.subjectcomposite materialen
dc.subjectmechanical propertiesen
dc.subjecttensile testen
dc.subjectSPSen
dc.subjectbioactive glasscs
dc.subjectscaffoldscs
dc.subjectcomposite materialcs
dc.subjectmechanical propertiescs
dc.subjecttensile testcs
dc.subjectSPScs
dc.titleMechanical Reinforcement of Bioglass®-Based Scaffoldsen
dc.title.alternativeMechanical Reinforcement of Bioglass®-Based Scaffoldscs
dc.typeTextcs
dc.type.driverdoctoralThesisen
dc.type.evskpdizertační prácecs
dcterms.dateAccepted2015-12-10cs
dcterms.modified2015-12-15-09:33:15cs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
sync.item.dbid89494en
sync.item.dbtypeZPen
sync.item.insts2025.03.27 14:41:41en
sync.item.modts2025.01.15 15:07:43en
thesis.disciplineFyzikální a materiálové inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav materiálových věd a inženýrstvícs
thesis.levelDoktorskýcs
thesis.namePh.D.cs
Files
Original bundle
Now showing 1 - 5 of 6
Loading...
Thumbnail Image
Name:
final-thesis.pdf
Size:
3.46 MB
Format:
Adobe Portable Document Format
Description:
final-thesis.pdf
Loading...
Thumbnail Image
Name:
thesis-1.pdf
Size:
1.68 MB
Format:
Adobe Portable Document Format
Description:
thesis-1.pdf
Loading...
Thumbnail Image
Name:
Posudek-Oponent prace-Jaroslav Katolicky.pdf
Size:
2.02 MB
Format:
Adobe Portable Document Format
Description:
Posudek-Oponent prace-Jaroslav Katolicky.pdf
Loading...
Thumbnail Image
Name:
Posudek-Oponent prace-posudekbertollaKotoul.pdf
Size:
152.09 KB
Format:
Adobe Portable Document Format
Description:
Posudek-Oponent prace-posudekbertollaKotoul.pdf
Loading...
Thumbnail Image
Name:
Posudek-Oponent prace-PABSTOponentskyposudeknapraciBertollacorrected.pdf
Size:
288.31 KB
Format:
Adobe Portable Document Format
Description:
Posudek-Oponent prace-PABSTOponentskyposudeknapraciBertollacorrected.pdf
Collections