Trapping and detecting nanoplastics by MXene-derived oxide microrobots

dc.contributor.authorUrso, Mariocs
dc.contributor.authorUssia, Martinacs
dc.contributor.authorNovotný, Filipcs
dc.contributor.authorPumera, Martincs
dc.coverage.issue1cs
dc.coverage.volume13cs
dc.date.issued2022-06-22cs
dc.description.abstractNanoplastic water pollution represents an increasing concern. Here, photogravitactic MXene-derived microrobots are programmed to trap nanoplastics in the layered structure and magnetically transfer them to low-cost electrodes for further detection. Nanoplastic pollution, the final product of plastic waste fragmentation in the environment, represents an increasing concern for the scientific community due to the easier diffusion and higher hazard associated with their small sizes. Therefore, there is a pressing demand for effective strategies to quantify and remove nanoplastics in wastewater. This work presents the "on-the-fly" capture of nanoplastics in the three-dimensional (3D) space by multifunctional MXene-derived oxide microrobots and their further detection. A thermal annealing process is used to convert Ti3C2Tx MXene into photocatalytic multi-layered TiO2, followed by the deposition of a Pt layer and the decoration with magnetic gamma-Fe2O3 nanoparticles. The MXene-derived gamma-Fe2O3/Pt/TiO2 microrobots show negative photogravitaxis, resulting in a powerful fuel-free motion with six degrees of freedom under light irradiation. Owing to the unique combination of self-propulsion and programmable Zeta potential, the microrobots can quickly attract and trap nanoplastics on their surface, including the slits between multi-layer stacks, allowing their magnetic collection. Utilized as self-motile preconcentration platforms, they enable nanoplastics' electrochemical detection using low-cost and portable electrodes. This proof-of-concept study paves the way toward the "on-site" screening of nanoplastics in water and its successive remediation.en
dc.formattextcs
dc.format.extent3573-1-3573-14cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationNATURE COMMUNICATIONS. 2022, vol. 13, issue 1, p. 3573-1-3573-14.en
dc.identifier.doi10.1038/s41467-022-31161-2cs
dc.identifier.issn2041-1723cs
dc.identifier.orcid0000-0001-7993-8138cs
dc.identifier.orcid0000-0002-3248-6725cs
dc.identifier.orcid0000-0001-5846-2951cs
dc.identifier.other178684cs
dc.identifier.researcheridF-2724-2010cs
dc.identifier.urihttp://hdl.handle.net/11012/208210
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofNATURE COMMUNICATIONScs
dc.relation.urihttps://www.nature.com/articles/s41467-022-31161-2cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2041-1723/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectmicromotorsen
dc.subjectparticlesen
dc.subjectremovalen
dc.titleTrapping and detecting nanoplastics by MXene-derived oxide microrobotsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-178684en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:50:31en
sync.item.modts2025.01.17 18:46:36en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovacecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41467022311612.pdf
Size:
2.31 MB
Format:
Adobe Portable Document Format
Description:
s41467022311612.pdf