Cooling of flue gas by cascade of polymeric hollow fiber heat exchangers

dc.contributor.authorRaudenský, Miroslavcs
dc.contributor.authorKůdelová, Terezacs
dc.contributor.authorBartuli, Erikcs
dc.contributor.authorKroulíková, Terezacs
dc.contributor.authorAstrouski, Iljacs
dc.coverage.issue1cs
dc.coverage.volume36cs
dc.date.issued2022-08-01cs
dc.description.abstractPolymeric hollow fibers heat exchangers can be effectively used for flue gas cooling. These heat exchangers are made of hundreds of hollow fibers with an outer diameter of 1.3 mm and a wall thickness of 0.15 mm. Selection of material allows to work with aggressive gasses and condensed liquids without risk of corrosion or damage by chemicals. These fibers may seem to be fragile, but they can stand up the inner pressure above 100 bar at room temperature and have burst pressure of 60 bar at temperature of 80 °C. Their surface is very smooth and that positively contributes to low fouling and its capability of self-cleaning. The flowing condensate is cleaning the fibers during its operating and it carries ash particles size up to 0.22 mm. No marks of abrasion or corrosion were observed on the fibers. Due to the low inner diameter of the fibers, the internal flow is laminar and heat transfer coefficient is velocity independent and high (2317 W/m2K). Values of overall heat transfer coefficient are over 100 W/m2K and are dominantly determined by heat transfer on the gas side. Measured volume heat performance of the tested heat exchangers varied from 4.2 MW/m3 to 2.2 MW/m3.en
dc.formattextcs
dc.format.extent1-10cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationCase Studies in Thermal Engineering. 2022, vol. 36, issue 1, p. 1-10.en
dc.identifier.doi10.1016/j.csite.2022.102220cs
dc.identifier.issn2214-157Xcs
dc.identifier.orcid0000-0001-7116-9274cs
dc.identifier.orcid0000-0001-5055-9310cs
dc.identifier.orcid0000-0002-3479-414Xcs
dc.identifier.orcid0000-0002-6112-8724cs
dc.identifier.orcid0000-0003-1716-5242cs
dc.identifier.other178512cs
dc.identifier.researcheridG-9625-2015cs
dc.identifier.researcheridD-8692-2018cs
dc.identifier.researcheridD-8676-2018cs
dc.identifier.researcheridAAH-3385-2020cs
dc.identifier.researcheridK-3618-2014cs
dc.identifier.scopus57216709671cs
dc.identifier.scopus57667460300cs
dc.identifier.scopus55616890300cs
dc.identifier.scopus57210947632cs
dc.identifier.scopus56941896200cs
dc.identifier.urihttp://hdl.handle.net/11012/208178
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofCase Studies in Thermal Engineeringcs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S2214157X2200466Xcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2214-157X/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectFlue gas coolingen
dc.subjectHeat exchangeren
dc.subjectHollow fiberen
dc.subjectPolyamideen
dc.subjectPolymeren
dc.titleCooling of flue gas by cascade of polymeric hollow fiber heat exchangersen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-178512en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:47:26en
sync.item.modts2025.01.17 15:27:16en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Laboratoř přenosu tepla a prouděnícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S2214157X2200466Xmain.pdf
Size:
5.67 MB
Format:
Adobe Portable Document Format
Description:
1s2.0S2214157X2200466Xmain.pdf