Automatizovaná diagnóza vývojové dysgrafie založená na kvantitativní analýze online písma

Loading...
Thumbnail Image
Date
2018-04-30
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
International Society for Science and Engineering, o.s.
Abstract
Prevalence problémů s psaním mezi dětmi školního věku je mezi 10 až 30 %. V současné době neexistuje v České republice objektivní metoda pro diagnózu a hodnocení míry závažnosti vývojové dysgrafie (VD). Cílem této studie je představit novou metodu objektivní diagnózy VD založené na kvantitativní analýze online písma. K tomuto účelu jsme extrahovali ze tří písemných cvičení sadu prostorových, časových, kinematických a dynamických parametrů. Pro identifikaci parametrů s vysokou diskriminační silou jsme následně provedli korelační analýzu mezi těmito parametry a skóry dotazníku HPSQ (Handwriting Proficiency Screening Questionnaire). Použitím klasifikátoru založeného na náhodných lesech v kombinaci s kvantifikací cvičení psaní abecedy jsme dosáhli přesnosti klasifikace téměř 80 % (sensitivita 77 %, specificita 83 %). Přesnost byla zvýšena na 92 % (sensitivita 92 %, specificita 93 %) aplikováním metody sekvenčního dopředného plovoucího výběru parametrů SFFS (Sequential Floating Forward Selection). Tato pilotní studie potvrzuje možnost automatizované diagnózy VD u dětí, které píšou psaným spojovaným písmem.
The prevalence of handwriting difficulties among school-aged children is around 10–30 %. Until now, there is no objective method to diagnose and rate developmental dysgraphia (DD) in Czech Republic. The goal of this study is to propose a new method of objective DD diagnosis based on quantitative analysis of online handwriting. For this purpose, we extracted a set of spatial, temporal, kinematic and dynamic features from three handwriting tasks. Consequently, we performed a correlation analysis between these features and score of handwriting proficiency screening questionnaire (HPSQ), in order to identify parameters with a good discrimination power. Using random forests classifier in combination with quantification of alphabet writing task, we reached nearly 80 % classification accuracy (77 % sensitivity, 83 % specificity). The classification accuracy was increased to 92 % (92 % sensitivity, 93 % specificity) by employing SFFS (Sequential Forward Feature Selection) method. This pilot study proves the possibility of automatic DD diagnosis in children cohort writing with cursive letters.
Description
Keywords
Citation
Elektrorevue. 2018, vol. 20, č. 2, s. 53-57. ISSN 1213-1539
http://www.elektrorevue.cz/
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
cs
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
(C) 2018 Elektrorevue
DOI
Collections
Citace PRO