Automatic Traffic Sign Detection and Recognition Using Colour Segmentation and Shape Identification

dc.contributor.authorHorák, Karelcs
dc.contributor.authorČíp, Pavelcs
dc.contributor.authorDavídek, Danielcs
dc.coverage.issue1cs
dc.coverage.volume68cs
dc.date.accessioned2021-12-10T15:53:08Z
dc.date.available2021-12-10T15:53:08Z
dc.date.issued2016-08-01cs
dc.description.abstractThe paper describes a colour-based segmentation method of European traffic signs for detection in an image and a feature-based recognition method for categorizing them into given classes. At first, we have performed analysis of several well-known colour spaces as the RGB, HSV and YCbCr often used for segmentation purposes. The HSV colour space has been chosen as the most convenient for segmentation step and colour-based models of traffic signs representatives were created. Next, the fast radial symmetry (FRS) detection method and the Harris corner detector were used to recognize circles, triangles and squares as main geometrical shapes of the traffic signs. For these purposes a new gallery of real-life images containing traffic signs has been created and analysed. Overall efficiency of our recognition method is approx. 93 % on our gallery and is usable for real-time implementations.en
dc.formattextcs
dc.format.extent1-6cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationMATEC Web of Conferences. 2016, vol. 68, issue 1, p. 1-6.en
dc.identifier.doi10.1051/matecconf/20166817002cs
dc.identifier.isbn2261236Xcs
dc.identifier.issn2261-236Xcs
dc.identifier.other127252cs
dc.identifier.urihttp://hdl.handle.net/11012/203162
dc.language.isoencs
dc.publisherEDP Sciencescs
dc.relation.ispartofMATEC Web of Conferencescs
dc.relation.urihttp://dx.doi.org/10.1051/matecconf/20166817002cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2261-236X/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectTraffic signen
dc.subjectcolour segmentationen
dc.subjectshape recognition.en
dc.titleAutomatic Traffic Sign Detection and Recognition Using Colour Segmentation and Shape Identificationen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-127252en
sync.item.dbtypeVAVen
sync.item.insts2021.12.10 16:53:08en
sync.item.modts2021.12.10 16:14:07en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav automatizace a měřicí technikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
matecconf_iciea2016_17002.pdf
Size:
2.16 MB
Format:
Adobe Portable Document Format
Description:
matecconf_iciea2016_17002.pdf