Non-autonomous double phase eigenvalue problems with indefinite weight and lack of compactness
dc.contributor.author | Tianxiang, Gou | cs |
dc.contributor.author | Radulescu, Vicentiu | cs |
dc.coverage.issue | 2 | cs |
dc.coverage.volume | 56 | cs |
dc.date.accessioned | 2024-05-13T12:45:46Z | |
dc.date.available | 2024-05-13T12:45:46Z | |
dc.date.issued | 2024-02-08 | cs |
dc.description.abstract | In this paper, we consider eigenvalues to the following double phase problem with unbalanced growth and indefinite weight,-Delta pau-Delta qu=lambda m(x)|u|q-2uinRN,$$\begin{equation*} \hspace*{3pc}-\Delta _pa u-\Delta _q u =\lambda m(x)|u|{q-2}u \quad \mbox{in} \,\, \mathbb {R}<^>N, \end{equation*}$$where N > 2$N \geqslant 2$, 1{0, 1}(\mathbb {R}N, [0, +\infty))$, a not equivalent to 0$a \not\equiv 0$ and m:RN -> R$m: \mathbb {R}N \rightarrow \mathbb {R}$ is an indefinite sign weight which may admit non-trivial positive and negative parts. Here, Delta q$\Delta _q$ is the q$q$-Laplacian operator and Delta pa$\Delta _pa$ is the weighted p$p$-Laplace operator defined by Delta pau:=div(a(x)| backward difference u|p-2 backward difference u)$\Delta _pa u:=\textnormal {div}(a(x)|\nabla u|{p-2} \nabla u)$. The problem can be degenerate, in the sense that the infimum of a$a$ in RN$\mathbb {R}N$ may be zero. Our main results distinguish between the cases p | en |
dc.format | text | cs |
dc.format.extent | 734-755 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | BULLETIN OF THE LONDON MATHEMATICAL SOCIETY. 2024, vol. 56, issue 2, p. 734-755. | en |
dc.identifier.doi | 10.1112/blms.12961 | cs |
dc.identifier.issn | 0024-6093 | cs |
dc.identifier.orcid | 0000-0003-4615-5537 | cs |
dc.identifier.other | 186775 | cs |
dc.identifier.researcherid | A-1503-2012 | cs |
dc.identifier.scopus | 35608668800 | cs |
dc.identifier.uri | https://hdl.handle.net/11012/245501 | |
dc.language.iso | en | cs |
dc.publisher | London Mathematical Society | cs |
dc.relation.ispartof | BULLETIN OF THE LONDON MATHEMATICAL SOCIETY | cs |
dc.relation.uri | https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.12961 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/0024-6093/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | regularity | en |
dc.subject | equations | en |
dc.title | Non-autonomous double phase eigenvalue problems with indefinite weight and lack of compactness | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-186775 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2024.05.13 14:45:46 | en |
sync.item.modts | 2024.05.13 14:13:52 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematiky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Bulletin of London Math Soc 2023 Gou Nonautonomous double phase eigenvalue problems with indefinite weight and lack.pdf
- Size:
- 244.64 KB
- Format:
- Adobe Portable Document Format
- Description:
- file Bulletin of London Math Soc 2023 Gou Nonautonomous double phase eigenvalue problems with indefinite weight and lack.pdf