Non-autonomous double phase eigenvalue problems with indefinite weight and lack of compactness

dc.contributor.authorTianxiang, Goucs
dc.contributor.authorRadulescu, Vicentiucs
dc.coverage.issue2cs
dc.coverage.volume56cs
dc.date.accessioned2024-05-13T12:45:46Z
dc.date.available2024-05-13T12:45:46Z
dc.date.issued2024-02-08cs
dc.description.abstractIn this paper, we consider eigenvalues to the following double phase problem with unbalanced growth and indefinite weight,-Delta pau-Delta qu=lambda m(x)|u|q-2uinRN,$$\begin{equation*} \hspace*{3pc}-\Delta _pa u-\Delta _q u =\lambda m(x)|u|{q-2}u \quad \mbox{in} \,\, \mathbb {R}<^>N, \end{equation*}$$where N > 2$N \geqslant 2$, 1{0, 1}(\mathbb {R}N, [0, +\infty))$, a not equivalent to 0$a \not\equiv 0$ and m:RN -> R$m: \mathbb {R}N \rightarrow \mathbb {R}$ is an indefinite sign weight which may admit non-trivial positive and negative parts. Here, Delta q$\Delta _q$ is the q$q$-Laplacian operator and Delta pa$\Delta _pa$ is the weighted p$p$-Laplace operator defined by Delta pau:=div(a(x)| backward difference u|p-2 backward difference u)$\Delta _pa u:=\textnormal {div}(a(x)|\nabla u|{p-2} \nabla u)$. The problem can be degenerate, in the sense that the infimum of a$a$ in RN$\mathbb {R}N$ may be zero. Our main results distinguish between the cases pen
dc.formattextcs
dc.format.extent734-755cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationBULLETIN OF THE LONDON MATHEMATICAL SOCIETY. 2024, vol. 56, issue 2, p. 734-755.en
dc.identifier.doi10.1112/blms.12961cs
dc.identifier.issn0024-6093cs
dc.identifier.orcid0000-0003-4615-5537cs
dc.identifier.other186775cs
dc.identifier.researcheridA-1503-2012cs
dc.identifier.scopus35608668800cs
dc.identifier.urihttps://hdl.handle.net/11012/245501
dc.language.isoencs
dc.publisherLondon Mathematical Societycs
dc.relation.ispartofBULLETIN OF THE LONDON MATHEMATICAL SOCIETYcs
dc.relation.urihttps://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.12961cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0024-6093/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectregularityen
dc.subjectequationsen
dc.titleNon-autonomous double phase eigenvalue problems with indefinite weight and lack of compactnessen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-186775en
sync.item.dbtypeVAVen
sync.item.insts2024.05.13 14:45:46en
sync.item.modts2024.05.13 14:13:52en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bulletin of London Math Soc 2023 Gou Nonautonomous double phase eigenvalue problems with indefinite weight and lack.pdf
Size:
244.64 KB
Format:
Adobe Portable Document Format
Description:
file Bulletin of London Math Soc 2023 Gou Nonautonomous double phase eigenvalue problems with indefinite weight and lack.pdf