Non-autonomous double phase eigenvalue problems with indefinite weight and lack of compactness
Loading...
Date
2024-02-08
Authors
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
London Mathematical Society
Altmetrics
Abstract
In this paper, we consider eigenvalues to the following double phase problem with unbalanced growth and indefinite weight,-Delta pau-Delta qu=lambda m(x)|u|q-2uinRN,$$\begin{equation*} \hspace*{3pc}-\Delta _pa u-\Delta _q u =\lambda m(x)|u|{q-2}u \quad \mbox{in} \,\, \mathbb {R}<^>N, \end{equation*}$$where N > 2$N \geqslant 2$, 1{0, 1}(\mathbb {R}N, [0, +\infty))$, a not equivalent to 0$a \not\equiv 0$ and m:RN -> R$m: \mathbb {R}N \rightarrow \mathbb {R}$ is an indefinite sign weight which may admit non-trivial positive and negative parts. Here, Delta q$\Delta _q$ is the q$q$-Laplacian operator and Delta pa$\Delta _pa$ is the weighted p$p$-Laplace operator defined by Delta pau:=div(a(x)| backward difference u|p-2 backward difference u)$\Delta _pa u:=\textnormal {div}(a(x)|\nabla u|{p-2} \nabla u)$. The problem can be degenerate, in the sense that the infimum of a$a$ in RN$\mathbb {R}N$ may be zero. Our main results distinguish between the cases p
Description
Keywords
Citation
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY. 2024, vol. 56, issue 2, p. 734-755.
https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.12961
https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.12961
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en