Image Reconstruction in Electrical Impedance Tomography through 1D-Convolutional Neural Network

but.event.date29.04.2025cs
but.event.titleSTUDENT EEICT 2025cs
dc.contributor.authorNomvussi, Serge Ayme Kouakouo
dc.contributor.authorMikulka, Jan
dc.date.accessioned2025-08-06T13:05:47Z
dc.date.available2025-08-06T13:05:47Z
dc.date.issued2025cs
dc.description.abstractThis paper presents a comparative analysis of image reconstruction performance using a 1D-Convolutional Neural Network (1D-CNN) against the Total Variation and the Gauss- Newton methods. The evaluation, conducted across multiple tests conditions, demonstrates that the 1D-CNN consistently outperforms both conventional methods in terms of correlation coefficient and structural similarity index (SSIM). In noise-free scenarios, the 1D-CNN achieves significantly higher correlation and SSIM values, indicating superior reconstruction accuracy. Furthermore, in the presence of noise (30 dB and 60 dB), the performance of the Total Variation and Gauss-Newton methods deteriorates considerably, whereas the 1D-CNN maintains high correlation and SSIM values, demonstrating strong robustness to noise. These findings highlight the effectiveness of deep learningbased approaches for image reconstruction, making the 1D-CNN a promising alternative to traditional reconstruction techniques.en
dc.formattextcs
dc.format.extent316-320cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings I of the 31st Conference STUDENT EEICT 2025: General papers. s. 316-320. ISBN 978-80-214-6321-9cs
dc.identifier.isbn978-80-214-6321-9
dc.identifier.urihttps://hdl.handle.net/11012/255399
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings I of the 31st Conference STUDENT EEICT 2025: General papersen
dc.relation.urihttps://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_1.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subject1D- convolutional Neural Networken
dc.subjectTotal Variationen
dc.subjectNewton-Gaussen
dc.subjectEITen
dc.titleImage Reconstruction in Electrical Impedance Tomography through 1D-Convolutional Neural Networken
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
316-Nomvussi.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format