Image Reconstruction in Electrical Impedance Tomography through 1D-Convolutional Neural Network

Loading...
Thumbnail Image
Date
2025
Authors
Nomvussi, Serge Ayme Kouakouo
Mikulka, Jan
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Abstract
This paper presents a comparative analysis of image reconstruction performance using a 1D-Convolutional Neural Network (1D-CNN) against the Total Variation and the Gauss- Newton methods. The evaluation, conducted across multiple tests conditions, demonstrates that the 1D-CNN consistently outperforms both conventional methods in terms of correlation coefficient and structural similarity index (SSIM). In noise-free scenarios, the 1D-CNN achieves significantly higher correlation and SSIM values, indicating superior reconstruction accuracy. Furthermore, in the presence of noise (30 dB and 60 dB), the performance of the Total Variation and Gauss-Newton methods deteriorates considerably, whereas the 1D-CNN maintains high correlation and SSIM values, demonstrating strong robustness to noise. These findings highlight the effectiveness of deep learningbased approaches for image reconstruction, making the 1D-CNN a promising alternative to traditional reconstruction techniques.
Description
Citation
Proceedings I of the 31st Conference STUDENT EEICT 2025: General papers. s. 316-320. ISBN 978-80-214-6321-9
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_1.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
DOI
Citace PRO