Performance Evaluation of Carrier Aggregation in LTE-A Pro Mobile Systems

Loading...
Thumbnail Image

Authors

Koláčková, Aneta
Saafi, Salwa
Mašek, Pavel
Hošek, Jiří
Jeřábek, Jan

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE
Altmetrics

Abstract

Carrier Aggregation (CA) was introduced by the 3GPP, in its Release 10 i.e., Long Term Evolution - Advanced (LTE-A), to address the peak data rate requirement set by the IMT-Advanced standard. As it enables for quick adoption of the fragmented radio spectrum, it was recognized by the telecommunication operators as a game-changing technology for achieving significantly increased data rates. In this paper, we detail how the implementation of CA with up to five Components Carriers (CCs) impacts the achievable throughput of connected end-users. In the simulation tool Network Simulator 3 (NS-3), the intra-band contiguous CA was implemented for both downlink and uplink channels. In addition, a uniform 2D grid of values that represent the Signal-to-Noise Ratio (SINR) in the downlink with respect to the eNodeB (eNB) i.e., Radio Environment Map (REM) was implemented. As the previously published results for the CA contain mostly the data for the downlink channel, the implemented scenario provides new insights related to the uplink channel communication. Also, in the performance evaluation, we illustrate the expected data rates for the 5G New Radio (NR) systems and compare them with the achieved results in the case of 4G CA setup.
Carrier Aggregation (CA) was introduced by the 3GPP, in its Release 10 i.e., Long Term Evolution - Advanced (LTE-A), to address the peak data rate requirement set by the IMT-Advanced standard. As it enables for quick adoption of the fragmented radio spectrum, it was recognized by the telecommunication operators as a game-changing technology for achieving significantly increased data rates. In this paper, we detail how the implementation of CA with up to five Components Carriers (CCs) impacts the achievable throughput of connected end-users. In the simulation tool Network Simulator 3 (NS-3), the intra-band contiguous CA was implemented for both downlink and uplink channels. In addition, a uniform 2D grid of values that represent the Signal-to-Noise Ratio (SINR) in the downlink with respect to the eNodeB (eNB) i.e., Radio Environment Map (REM) was implemented. As the previously published results for the CA contain mostly the data for the downlink channel, the implemented scenario provides new insights related to the uplink channel communication. Also, in the performance evaluation, we illustrate the expected data rates for the 5G New Radio (NR) systems and compare them with the achieved results in the case of 4G CA setup.

Description

Citation

Proceedings of the 2020 43rd International Conference on Telecommunications and Signal Processing (TSP). 2020, p. 627-632.
https://ieeexplore.ieee.org/document/9163440

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO