Electroless Deposition of Ni-P/SiO2 Composite Coating
Loading...
Date
2016-10-30
Authors
Buchtík, Martin
Kosár, Petr
Wasserbauer, Jaromír
Zmrzlý, Martin
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Mendel University in Brno
Altmetrics
Abstract
Electroless deposit Ni–P/SiO2 composite coating was performed on the steel substrate, DIN EN 10130. The preparation of nickel coating included two main steps. In the first step, the fraction of SiO2 particles sized the tens of nanometres was obtained by sedimentation. In the second step, the composite coating was plated on the steel substrate. The actual deposition process contains the deposition of plain Ni-P interlayer which served as the nucleation center for the deposition of Ni-P/SiO2 composite coating with co-deposited SiO2 particles. The morphology of deposited composite coating was studied by scanning electron microscope (SEM). Amount of individual elements in deposited coatings was determinated by EDS analysis. The microhardness of deposited composite coating was subsequently compared with microhardness value of the plain Ni–P coating.
Electroless deposit Ni–P/SiO2 composite coating was performed on the steel substrate, DIN EN 10130. The preparation of nickel coating included two main steps. In the first step, the fraction of SiO2 particles sized the tens of nanometres was obtained by sedimentation. In the second step, the composite coating was plated on the steel substrate. The actual deposition process contains the deposition of plain Ni-P interlayer which served as the nucleation center for the deposition of Ni-P/SiO2 composite coating with co-deposited SiO2 particles. The morphology of deposited composite coating was studied by scanning electron microscope (SEM). Amount of individual elements in deposited coatings was determinated by EDS analysis. The microhardness of deposited composite coating was subsequently compared with microhardness value of the plain Ni–P coating.
Electroless deposit Ni–P/SiO2 composite coating was performed on the steel substrate, DIN EN 10130. The preparation of nickel coating included two main steps. In the first step, the fraction of SiO2 particles sized the tens of nanometres was obtained by sedimentation. In the second step, the composite coating was plated on the steel substrate. The actual deposition process contains the deposition of plain Ni-P interlayer which served as the nucleation center for the deposition of Ni-P/SiO2 composite coating with co-deposited SiO2 particles. The morphology of deposited composite coating was studied by scanning electron microscope (SEM). Amount of individual elements in deposited coatings was determinated by EDS analysis. The microhardness of deposited composite coating was subsequently compared with microhardness value of the plain Ni–P coating.
Description
Citation
Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. 2016, vol. 64, issue 5, p. 1459-1464.
https://acta.mendelu.cz/64/5/1459/
https://acta.mendelu.cz/64/5/1459/
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

0000-0003-4949-8092