Comparison of crack propagation rates in selected structural components made from AISI 304 grades: Three-point bending test

Loading...
Thumbnail Image

Authors

Juhászová, Tereza
Miarka, Petr
Jindra, Daniel
Kala, Zdeněk
Seitl, Stanislav

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

This study focuses on crack propagation rates of AISI 304 stainless-steel specimens made from selected structural components experimentally tested in three-point bending. Components of two productions loaded with constant force with selected stress ratio were submitted to cyclic loading in order to measure crack opening displacement. Experimentally obtained data were evaluated using 3D modelling in finite element modeling software intending to determine fracture mechanical parameters. The tool to describe fatigue behavior was Paris’ law, used to describe crack propagation in intermediate crack growth rate range. Paris–Erdogan equation was evaluated as a fitting of linear part of the graphical plot of crack growth rate with respect to the stress intensity range and material constants were gained from numerical description of the relation. Comparison of fatigue crack behavior in AISI 304 steel components of two productions was studied and evaluated.
This study focuses on crack propagation rates of AISI 304 stainless-steel specimens made from selected structural components experimentally tested in three-point bending. Components of two productions loaded with constant force with selected stress ratio were submitted to cyclic loading in order to measure crack opening displacement. Experimentally obtained data were evaluated using 3D modelling in finite element modeling software intending to determine fracture mechanical parameters. The tool to describe fatigue behavior was Paris’ law, used to describe crack propagation in intermediate crack growth rate range. Paris–Erdogan equation was evaluated as a fitting of linear part of the graphical plot of crack growth rate with respect to the stress intensity range and material constants were gained from numerical description of the relation. Comparison of fatigue crack behavior in AISI 304 steel components of two productions was studied and evaluated.

Description

Citation

Procedia Structural Integrity. 2023, vol. 42, issue 1, p. 1090-1097.
https://doi.org/10.1016/j.prostr.2022.12.138

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO