General concepts of multi-sensor data-fusion based SLAM
dc.contributor.author | Klečka, Jan | cs |
dc.contributor.author | Horák, Karel | cs |
dc.contributor.author | Boštík, Ondřej | cs |
dc.coverage.issue | 2 | cs |
dc.coverage.volume | 9 | cs |
dc.date.issued | 2020-06-01 | cs |
dc.description.abstract | This paper is approaching a problem of Simultaneous Localization and Mapping (SLAM) algorithms focused specically on processing of data from a heterogeneous set of sensors concurrently. Sensors are considered to be different in a sense of measured physical quantity and so the problem of effective data-fusion is discussed. A special extension of the standard probabilistic approach to SLAM algorithms is presented. This extension is composed of two parts. Firstly is presented general perspective multiple-sensors based SLAM and then thee archetypical special cases are discuses. One archetype provisionally designated as ”partially collective mapping” has been analyzed also in a practical perspective because it implies a promising options for implicit map-level data-fusion. | en |
dc.format | text | cs |
dc.format.extent | 63-72 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | International Journal of Robotics and Automation (IJRA). 2020, vol. 9, issue 2, p. 63-72. | en |
dc.identifier.doi | 10.11591/ijra.v9i2.pp63-72 | cs |
dc.identifier.issn | 2089-4856 | cs |
dc.identifier.orcid | 0000-0002-1219-7782 | cs |
dc.identifier.orcid | 0000-0002-2280-3029 | cs |
dc.identifier.orcid | 0000-0002-7856-2084 | cs |
dc.identifier.other | 164281 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/193374 | |
dc.language.iso | en | cs |
dc.publisher | Institute of Advanced Engineering and Science | cs |
dc.relation.ispartof | International Journal of Robotics and Automation (IJRA) | cs |
dc.relation.uri | http://ijra.iaescore.com/index.php/IJRA/article/view/20258/12906 | cs |
dc.rights | Creative Commons Attribution-ShareAlike 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2089-4856/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/4.0/ | cs |
dc.subject | Simultaneous localization and mapping (SLAM) | en |
dc.subject | Localization | en |
dc.subject | Mapping | en |
dc.subject | Data fusion | en |
dc.subject | Partially collective mapping | en |
dc.title | General concepts of multi-sensor data-fusion based SLAM | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-164281 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:39:25 | en |
sync.item.modts | 2025.01.17 16:38:27 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav automatizace a měřicí techniky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 20258377471PB.pdf
- Size:
- 487.26 KB
- Format:
- Adobe Portable Document Format
- Description:
- 20258377471PB.pdf