Effect of electron localization in theoretical design of Ni-Mn-Ga based magnetic shape memory alloys

dc.contributor.authorZelený, Martincs
dc.contributor.authorSedlák, Petrcs
dc.contributor.authorHeczko, Olegcs
dc.contributor.authorSeiner, Hanušcs
dc.contributor.authorVeřtát, Petrcs
dc.contributor.authorObata, Masaocs
dc.contributor.authorKotani, Takaocs
dc.contributor.authorOda, Tatsukics
dc.contributor.authorStraka, Ladislavcs
dc.coverage.issue1cs
dc.coverage.volume209cs
dc.date.issued2021-06-19cs
dc.description.abstractThe precise determination of the stability of different martensitic phases is an essential task in the successful design of (magnetic) shape memory alloys. We evaluate the effect of electron delocalization correction on the predictive power of density functional theory for Ni-Mn-Ga, the prototype magnetic shape memory compound. Using the corrected Hubbard-model-based generalized gradient approximation (GGA+U), we varied the Coulomb repulsion parameter U from 0 eV to 3 eV to reveal the evolution of predicted material parameters. The increasing localization on Mn sites results in the increasing stabilization of 10M modulated structure in stoichiometric Ni2MnGa in agreement with experiment whereas uncorrected GGA and meta-GGA functional provide the lowest energy for 4O modulated structure and nonmodulated structure, respectively. GGA+U calculations indicate that 10M structure is more stable than other martensitic structures for U > 1.2 eV. The key features of density of states (DOS) responsible for the stabilization or destabilization of particular martensitic phases calculated with GGA+U are found also in DOS calculated with advanced quasi-particle self-consistent GW (QSGW) method. It supports the physical background of Hubbard correction. Moreover, the calculations with U = 1.8 eV provide the best agreement with experimental data for lattice parameters of stoichiometric and off-stoichiometric alloys. (C) 2021 The Authors. Published by Elsevier Ltd.en
dc.formattextcs
dc.format.extent109917--cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationMaterials & Design. 2021, vol. 209, issue 1, p. 109917--.en
dc.identifier.doi10.1016/j.matdes.2021.109917cs
dc.identifier.issn0264-1275cs
dc.identifier.orcid0000-0001-6715-4088cs
dc.identifier.other175088cs
dc.identifier.researcheridC-5602-2013cs
dc.identifier.scopus57076741200cs
dc.identifier.urihttp://hdl.handle.net/11012/203217
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofMaterials & Designcs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0264127521004706cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0264-1275/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectMartensitic transformationen
dc.subjectMagnetic shape memory alloysen
dc.subjectPhase stabilityen
dc.subjectElectron localizationen
dc.subjectAb initio calculationsen
dc.subjectExchange-correlation energyen
dc.titleEffect of electron localization in theoretical design of Ni-Mn-Ga based magnetic shape memory alloysen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-175088en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:49:04en
sync.item.modts2025.01.17 15:34:14en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav materiálových věd a inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S0264127521004706main.pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format
Description:
1s2.0S0264127521004706main.pdf