Effect of electron localization in theoretical design of Ni-Mn-Ga based magnetic shape memory alloys

Loading...
Thumbnail Image

Authors

Zelený, Martin
Sedlák, Petr
Heczko, Oleg
Seiner, Hanuš
Veřtát, Petr
Obata, Masao
Kotani, Takao
Oda, Tatsuki
Straka, Ladislav

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

The precise determination of the stability of different martensitic phases is an essential task in the successful design of (magnetic) shape memory alloys. We evaluate the effect of electron delocalization correction on the predictive power of density functional theory for Ni-Mn-Ga, the prototype magnetic shape memory compound. Using the corrected Hubbard-model-based generalized gradient approximation (GGA+U), we varied the Coulomb repulsion parameter U from 0 eV to 3 eV to reveal the evolution of predicted material parameters. The increasing localization on Mn sites results in the increasing stabilization of 10M modulated structure in stoichiometric Ni2MnGa in agreement with experiment whereas uncorrected GGA and meta-GGA functional provide the lowest energy for 4O modulated structure and nonmodulated structure, respectively. GGA+U calculations indicate that 10M structure is more stable than other martensitic structures for U > 1.2 eV. The key features of density of states (DOS) responsible for the stabilization or destabilization of particular martensitic phases calculated with GGA+U are found also in DOS calculated with advanced quasi-particle self-consistent GW (QSGW) method. It supports the physical background of Hubbard correction. Moreover, the calculations with U = 1.8 eV provide the best agreement with experimental data for lattice parameters of stoichiometric and off-stoichiometric alloys. (C) 2021 The Authors. Published by Elsevier Ltd.
The precise determination of the stability of different martensitic phases is an essential task in the successful design of (magnetic) shape memory alloys. We evaluate the effect of electron delocalization correction on the predictive power of density functional theory for Ni-Mn-Ga, the prototype magnetic shape memory compound. Using the corrected Hubbard-model-based generalized gradient approximation (GGA+U), we varied the Coulomb repulsion parameter U from 0 eV to 3 eV to reveal the evolution of predicted material parameters. The increasing localization on Mn sites results in the increasing stabilization of 10M modulated structure in stoichiometric Ni2MnGa in agreement with experiment whereas uncorrected GGA and meta-GGA functional provide the lowest energy for 4O modulated structure and nonmodulated structure, respectively. GGA+U calculations indicate that 10M structure is more stable than other martensitic structures for U > 1.2 eV. The key features of density of states (DOS) responsible for the stabilization or destabilization of particular martensitic phases calculated with GGA+U are found also in DOS calculated with advanced quasi-particle self-consistent GW (QSGW) method. It supports the physical background of Hubbard correction. Moreover, the calculations with U = 1.8 eV provide the best agreement with experimental data for lattice parameters of stoichiometric and off-stoichiometric alloys. (C) 2021 The Authors. Published by Elsevier Ltd.

Description

Citation

MATERIALS & DESIGN. 2021, vol. 209, issue 1, p. 109917--.
https://www.sciencedirect.com/science/article/pii/S0264127521004706

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO