A System Using Artificial Intelligence to Detect and Scare Bird Flocks in the Protection of Ripening Fruit

Loading...
Thumbnail Image

Authors

Marcoň, Petr
Janoušek, Jiří
Pokorný, Josef
Novotný, Josef
Vlachová Hutová, Eliška
Širůčková, Anna
Čáp, Martin
Lázničková, Jana
Kadlec, Radim
Raichl, Petr

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

Flocks of birds may cause major damage to fruit crops in the ripening phase. This problem is addressed by various methods for bird scaring; in many cases, however, the birds become accustomed to the distraction, and the applied scaring procedure loses its purpose. To help eliminate the difficulty, we present a system to detect flocks and to trigger an actuator that will scare the objects only when a flock passes through the monitored space. The actual detection is performed with artificial intelligence utilizing a convolutional neural network. Before teaching the network, we employed videocameras and a differential algorithm to detect all items moving in the vineyard. Such objects revealed in the images were labeled and then used in training, testing, and validating the network. The assessment of the detection algorithm required evaluating the parameters precision, recall, and F1 score. In terms of function, the algorithm is implemented in a module consisting of a microcomputer and a connected videocamera. When a flock is detected, the microcontroller will generate a signal to be wirelessly transmitted to the module, whose task is to trigger the scaring actuator.
Flocks of birds may cause major damage to fruit crops in the ripening phase. This problem is addressed by various methods for bird scaring; in many cases, however, the birds become accustomed to the distraction, and the applied scaring procedure loses its purpose. To help eliminate the difficulty, we present a system to detect flocks and to trigger an actuator that will scare the objects only when a flock passes through the monitored space. The actual detection is performed with artificial intelligence utilizing a convolutional neural network. Before teaching the network, we employed videocameras and a differential algorithm to detect all items moving in the vineyard. Such objects revealed in the images were labeled and then used in training, testing, and validating the network. The assessment of the detection algorithm required evaluating the parameters precision, recall, and F1 score. In terms of function, the algorithm is implemented in a module consisting of a microcomputer and a connected videocamera. When a flock is detected, the microcontroller will generate a signal to be wirelessly transmitted to the module, whose task is to trigger the scaring actuator.

Description

Citation

SENSORS. 2021, vol. 21, issue 12, p. 1-16.
https://www.mdpi.com/1424-8220/21/12/4244/htm

Document type

Peer-reviewed

Document version

draft

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO