Synthesis Dynamics of Graphite Oxide

dc.contributor.authorBannov, Alexander G.cs
dc.contributor.authorManakhov, Antoncs
dc.contributor.authorShibaev, Alexander A.cs
dc.contributor.authorUkhina, A.V.cs
dc.contributor.authorPolčák, Josefcs
dc.contributor.authorMaksimovskii, E. A.cs
dc.coverage.issue1cs
dc.coverage.volume663cs
dc.date.accessioned2024-03-08T14:46:30Z
dc.date.available2024-03-08T14:46:30Z
dc.date.issued2018-05-10cs
dc.description.abstractGraphite oxide synthesis dynamics were investigated using a sampling technique. The synthesis of graphite oxide was carried out by a modified Hummers’ method. Small samples of the solid phase (30–50 mg) were collected from the reaction mixture and analyzed by thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, X-ray diffraction, Raman spectroscopy, energy dissipative X-ray spectroscopy, and X-ray photoelectron spectroscopy. The strongest oxidation was detected 10 min after the start of the synthesis, i.e., after the addition of KMnO4, when the formation of the graphite oxide phase with intercalated guest molecules begins. The intercalation of graphite started after 30 min of synthesis when the temperature was increased to 35°C. The addition of ice into the reaction mixture leads to the increase in the COOH group concentration, whereas the concentration of C=O groups slightly changes, and the concentration of the C–O and C=O groups remains almost constant. It was found that the degree of oxidation of graphite oxide exhibited complex change, and H2O2 plays a significant role not only in the removal of impurities but also in the increase in the GO oxidation degree that is reflected by a higher concentration of oxygen-containing functional groups. Differential scanning calorimetry and thermogravimetric analysis data confirmed that the additions of ice and H2O2 induce the stronger formation of surface functional groups instead of intercalated guest species.en
dc.formattextcs
dc.format.extent165-175cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationThermochimica Acta. 2018, vol. 663, issue 1, p. 165-175.en
dc.identifier.doi10.1016/j.tca.2018.03.017cs
dc.identifier.issn0040-6031cs
dc.identifier.orcid0000-0002-6571-6291cs
dc.identifier.other149864cs
dc.identifier.researcheridD-8130-2012cs
dc.identifier.scopus25632811000cs
dc.identifier.urihttps://hdl.handle.net/11012/245260
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofThermochimica Actacs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0040603118300960cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0040-6031/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectgraphite oxideen
dc.subjectsynthesisen
dc.subjectthermal analysisen
dc.subjectHummers’ methoden
dc.titleSynthesis Dynamics of Graphite Oxideen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionacceptedVersionen
sync.item.dbidVAV-149864en
sync.item.dbtypeVAVen
sync.item.insts2024.03.08 15:46:30en
sync.item.modts2024.03.08 15:13:11en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Příprava a charakterizace nanostrukturcs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Sdílená laboratoř RP1cs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
j.tca.2018.03.017accepted.pdf
Size:
1.12 MB
Format:
Adobe Portable Document Format
Description:
file j.tca.2018.03.017accepted.pdf