New Hydrodynamic Electrochemical Arrangement for Cadmium Ions Detection Using Thick-Film Chemical Sensor Electrodes
Loading...
Date
Authors
Prášek, Jan
Adámek, Martin
Hubálek, Jaromír
Adam, Vojtěch
Trnková, Libuše
Kizek, René
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Altmetrics
Abstract
Miniaturization and integration of chemical devices into modules that are dimensionally comparable with electronic chips (Lab on Chip) is nowadays developing worldwide. The aim of our work was to suggest and optimize the best conditions for fabrication of TFT sensor due to its sensitivity and low experimental deviations. New electrochemical analytical device was developed to ensure certain known mass transport to electrodes, which is the most limiting process that influencing the response quality of the sensor. The device consists from rotating conic vessel for measured sample and stick-in thick-film sensor.. The sensors responses were tested under trace analysis of cadmium. Measurements were done also with the others electrochemical arrangements to compare with the new one. The sensor output current response dependence on the liquid velocity and geometrical arrangement within using standard electrochemical couple of potassium ferrocyanide-ferricyanide is presented. We found out that the new device with controlled flow of electrolyte to sensor worked properly and gave satisfactory results.
Miniaturization and integration of chemical devices into modules that are dimensionally comparable with electronic chips (Lab on Chip) is nowadays developing worldwide. The aim of our work was to suggest and optimize the best conditions for fabrication of TFT sensor due to its sensitivity and low experimental deviations. New electrochemical analytical device was developed to ensure certain known mass transport to electrodes, which is the most limiting process that influencing the response quality of the sensor. The device consists from rotating conic vessel for measured sample and stick-in thick-film sensor.. The sensors responses were tested under trace analysis of cadmium. Measurements were done also with the others electrochemical arrangements to compare with the new one. The sensor output current response dependence on the liquid velocity and geometrical arrangement within using standard electrochemical couple of potassium ferrocyanide-ferricyanide is presented. We found out that the new device with controlled flow of electrolyte to sensor worked properly and gave satisfactory results.
Miniaturization and integration of chemical devices into modules that are dimensionally comparable with electronic chips (Lab on Chip) is nowadays developing worldwide. The aim of our work was to suggest and optimize the best conditions for fabrication of TFT sensor due to its sensitivity and low experimental deviations. New electrochemical analytical device was developed to ensure certain known mass transport to electrodes, which is the most limiting process that influencing the response quality of the sensor. The device consists from rotating conic vessel for measured sample and stick-in thick-film sensor.. The sensors responses were tested under trace analysis of cadmium. Measurements were done also with the others electrochemical arrangements to compare with the new one. The sensor output current response dependence on the liquid velocity and geometrical arrangement within using standard electrochemical couple of potassium ferrocyanide-ferricyanide is presented. We found out that the new device with controlled flow of electrolyte to sensor worked properly and gave satisfactory results.
Description
Citation
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
DOI
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported

0000-0003-1228-5712 