Optimal approximation of analog PID controllers of complex fractional-order
dc.contributor.author | Mahata, Shibendu | cs |
dc.contributor.author | Herencsár, Norbert | cs |
dc.contributor.author | Maione, Guido | cs |
dc.coverage.issue | 4 | cs |
dc.coverage.volume | 26 | cs |
dc.date.issued | 2023-05-19 | cs |
dc.description.abstract | Complex fractional-order (CFO) transfer functions, being more generalized versions of their real-order counterparts, lend greater flexibility to system modeling. Due to the absence of commercial complex-order fractance elements, the implementation of CFO models is challenging. To alleviate this issue, a constrained optimization approach that meets the targeted frequency responses is proposed for the rational approximation of CFO systems. The technique generates stable, {minimum-phase, and real-valued coefficients based approximants}, which are not always feasible for the curve-fitting approach reported in the literature. {Stability and performance studies of the CFO proportional-integral-derivative (CFOPID) controllers for the Podlubny's, the internal model control, and the El-Khazali's forms are considered to demonstrate the feasibility of the proposed technique}. Simulation results highlight that, for a practically reasonable order, all the designs achieve good agreement with the theoretical characteristics. {Performance comparisons with the CFOPID controller approximants determined by the Oustaloup's CFO differentiator based substitution method justify the proposed approach. | en |
dc.format | text | cs |
dc.format.extent | 1566-1593 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Fractional Calculus and Applied Analysis. 2023, vol. 26, issue 4, p. 1566-1593. | en |
dc.identifier.doi | 10.1007/s13540-023-00168-x | cs |
dc.identifier.issn | 1311-0454 | cs |
dc.identifier.orcid | 0000-0002-9504-2275 | cs |
dc.identifier.other | 183507 | cs |
dc.identifier.researcherid | A-6539-2009 | cs |
dc.identifier.scopus | 23012051100 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/213640 | |
dc.language.iso | en | cs |
dc.publisher | Springer Nature | cs |
dc.relation.ispartof | Fractional Calculus and Applied Analysis | cs |
dc.relation.uri | https://link.springer.com/article/10.1007/s13540-023-00168-x | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1311-0454/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | complex fractional-order system (primary) | en |
dc.subject | complex fractional-order PID controller | en |
dc.subject | approximation | en |
dc.subject | constrained optimization | en |
dc.subject | differential evolution | en |
dc.title | Optimal approximation of analog PID controllers of complex fractional-order | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-183507 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:42:33 | en |
sync.item.modts | 2025.01.17 16:37:46 | en |
thesis.grantor | VysokĂ© uÄŤenĂ technickĂ© v BrnÄ›. Fakulta elektrotechniky a komunikaÄŤnĂch technologiĂ. Ăšstav telekomunikacĂ | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s1354002300168x.pdf
- Size:
- 1.28 MB
- Format:
- Adobe Portable Document Format
- Description:
- s1354002300168x.pdf