Step-edge assisted large scale FeSe monolayer growth on epitaxial Bi(2)Se(3)thin films

dc.contributor.authorFikáček, Jancs
dc.contributor.authorProcházka, Pavelcs
dc.contributor.authorStetsovych, Vitaliics
dc.contributor.authorPrůša, Stanislavcs
dc.contributor.authorVondráček, Martincs
dc.contributor.authorKormoš, Lukášcs
dc.contributor.authorSkála, Tomášcs
dc.contributor.authorVlaic, Petrucs
dc.contributor.authorCaha, Ondřejcs
dc.contributor.authorCarva, Karelcs
dc.contributor.authorČechal, Jancs
dc.contributor.authorSpringholz, Gunthercs
dc.contributor.authorHonolka, Jancs
dc.coverage.issue7cs
dc.coverage.volume22cs
dc.date.accessioned2021-04-20T06:54:59Z
dc.date.available2021-04-20T06:54:59Z
dc.date.issued2020-07-01cs
dc.description.abstractEnhanced superconductivity of FeSe in the 2D limit on oxide surfaces as well as the prediction oftopological superconductivityat the interface to topological insulators makes the fabrication of Fe-chalcogenide monolayers a topic of current interest. So far superconductive properties of the latter are mostly studied by scanning tunneling spectroscopy, which can detect gaps in the local density of states as an indicator for Cooper pairing. Direct macroscopic transport properties, which can prove or falsify a true superconducting phase, are yet widely unexplored due to the difficulty to grow monolayer films with homogeneous material properties on a larger scale. Here we report on a promising route to fabricate micron-scale continuous carpets of monolayer thick FeSe on Bi(2)Se(3)topological insulators. In contrast to previous procedures based on ultraflat bulk Bi(2)Se(3)surfaces, we use molecular beam epitaxy grown Bi(2)Se(3)films with high step-edge densities (terrace widths 10-100 nm). We observe that step edges promote the almost strainless growth of coalescing FeSe domains without compromising the underlying Bi(2)Se(3)crystal structure.en
dc.formattextcs
dc.format.extent1-12cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationNEW JOURNAL OF PHYSICS. 2020, vol. 22, issue 7, p. 1-12.en
dc.identifier.doi10.1088/1367-2630/ab9b59cs
dc.identifier.issn1367-2630cs
dc.identifier.other165349cs
dc.identifier.urihttp://hdl.handle.net/11012/196526
dc.language.isoencs
dc.publisherIOP Publishingcs
dc.relation.ispartofNEW JOURNAL OF PHYSICScs
dc.relation.urihttps://iopscience.iop.org/article/10.1088/1367-2630/ab9b59cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1367-2630/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectFe-chalcogenidesen
dc.subjecttopological insulatorsen
dc.subjectFeSeen
dc.subjectinterface superconductivityen
dc.subjectunconventional superconductivityen
dc.titleStep-edge assisted large scale FeSe monolayer growth on epitaxial Bi(2)Se(3)thin filmsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-165349en
sync.item.dbtypeVAVen
sync.item.insts2021.04.20 08:54:59en
sync.item.modts2021.04.20 08:14:28en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Molekulární nanostruktury na površíchcs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Příprava a charakterizace nanostrukturcs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Fakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fikacek_2020_New_J._Phys._22_073050.pdf
Size:
3.58 MB
Format:
Adobe Portable Document Format
Description:
Fikacek_2020_New_J._Phys._22_073050.pdf