A Variable Step-size CLMS Algorithm and Its Analysis

Loading...
Thumbnail Image

Authors

Fan, Xinfeng
Tan, Zhiliang
Song, Peijiao
Chen, Liwei

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

In this paper, a hyperbolic tangent variable step-size convex combination of the least mean square (HTVSCLMS) algorithm is proposed and analyzed. This work avoids the compromise between the convergence speed and the steady-state error for two filters in convex combination of the least mean square (CLMS) algorithm. In the proposed algorithm, the big step-size filter is replaced by a filter whose iteration step-size is a modified function based on hyperbolic tangent function. Thus it constructs hyperbolic tangent nonlinear relationship between step-size and error. At the same time, the small step-size filter remains unchanged but fixed. So, it conquers the slow convergence speed and the weak anti-interference ability of fixed step-size CLMS. Simulation results show that HTVSCLMS algorithm, compared with CLMS algorithm and variable step-size CLMS (VSCLMS) algorithm, not only has superior capability of tracking in the presence of noise and in a stable and even non-stable environment, but also can maintain a better convergence.

Description

Citation

Radioengineering. 2020 vol. 29, č. 1, s. 182-188. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2019/20_01_0182_0188.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International license
Citace PRO