Modeling Mechanical Properties of Titanium Scaffolds with Variable Microporosity

dc.contributor.authorSlámečka, Karelcs
dc.contributor.authorSkalka, Petrcs
dc.contributor.authorPokluda, Jaroslavcs
dc.coverage.issue19cs
dc.coverage.volume26cs
dc.date.accessioned2025-04-04T11:56:54Z
dc.date.available2025-04-04T11:56:54Z
dc.date.issued2024-10-01cs
dc.description.abstractThe article introduces a two-level finite element model for metallic scaffolds with porosity at both design and material levels. Despite several additive manufacturing methods producing structures with controlled hierarchical porosity, their functional properties remain largely unknown, hindering industrial utilization. This article examines how material microporosity affects the mechanical properties of a scaffold prepared by direct ink writing from pure titanium with dimensions typical for orthopedic implants. The study focuses on the compressive response of scaffolds with microporosity ranging from 0.05 to 0.65. The article demonstrates the practical application of the model by estimating the effective Young's modulus and the relative length of the fatigue crack initiation stage. Tensile plastic strains at critical sites exhibit a delocalization from around micropores followed by relocalization into thinning interpore walls with increasing microporosity, resulting in the highest fracture strain predicted for microporosities between 0.2 and 0.3. These strains enable the estimation of the length of the fatigue crack initiation stage, which proves to be very short for all microporosities. This emphasizes the crucial role of the crack growth stage in scaffold fatigue life and confirms the potential for additional experiments on scaffolds with microporosities exceeding 0.15 to enhance their fatigue resistance. The article presents a finite element model for metallic scaffolds, investigating the impact of material microporosity on mechanical behavior. Specifically, the study investigates regular microporous titanium scaffolds prepared by direct ink writing, highlighting the effects of strain delocalization and relocalization on fracture strain. Moreover, the model estimates the relative length of the fatigue crack initiation stage in these materials.image (c) 2024 WILEY-VCH GmbHen
dc.formattextcs
dc.format.extent1-8cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAdvanced Engineering Materials. 2024, vol. 26, issue 19, p. 1-8.en
dc.identifier.doi10.1002/adem.202400535cs
dc.identifier.issn1527-2648cs
dc.identifier.orcid0000-0001-8847-075Xcs
dc.identifier.orcid0000-0002-7863-3372cs
dc.identifier.orcid0000-0002-8449-1200cs
dc.identifier.other189900cs
dc.identifier.researcheridD-9475-2012cs
dc.identifier.researcheridG-9615-2014cs
dc.identifier.researcheridD-7239-2012cs
dc.identifier.scopus16242487800cs
dc.identifier.scopus56389611100cs
dc.identifier.urihttps://hdl.handle.net/11012/250799
dc.language.isoencs
dc.publisherWILEY-V C H VERLAG GMBHcs
dc.relation.ispartofAdvanced Engineering Materialscs
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1002/adem.202400535cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1527-2648/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectdirect ink writingen
dc.subjectfinite element modelingen
dc.subjectmetal fatigueen
dc.subjectmicroporosityen
dc.subjectporous metallic materialsen
dc.subjecttitanium scaffoldsen
dc.titleModeling Mechanical Properties of Titanium Scaffolds with Variable Microporosityen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/GA0/GA/GA23-07879Scs
sync.item.dbidVAV-189900en
sync.item.dbtypeVAVen
sync.item.insts2025.04.04 13:56:54en
sync.item.modts2025.04.02 14:32:09en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav mechaniky těles, mechatroniky a biomechanikycs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé povlakycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AdvEngMater2024Slamecka.pdf
Size:
3.46 MB
Format:
Adobe Portable Document Format
Description:
file AdvEngMater2024Slamecka.pdf