Air–liquid interactions in a pressure-swirl spray

dc.contributor.authorJedelský, Jancs
dc.contributor.authorMalý, Milancs
dc.contributor.authorDel Corral, Noé Pintocs
dc.contributor.authorWigley, Grahamcs
dc.contributor.authorJanáčková, Ladacs
dc.contributor.authorJícha, Miroslavcs
dc.coverage.issue6cs
dc.coverage.volume121cs
dc.date.issued2018-01-02cs
dc.description.abstractThe energy transfer between a liquid hollow cone spray and the surrounding air has been studied using both imaging and phase-Doppler techniques. The spray was produced by a pressure-swirl atomizer discharging Jet A-1 fuel at inlet over pressures of dp = 0.5, 1.0 and 1.5 MPa into quiescent ambient air. The liquid exits the nozzle as a conical film which thins as it spreads and develops long- and short-wave sinusoidal instabilities with breakup occurring, at the length smaller than that predicted by the inviscid model, to form film fragments and ultimately droplets downstream the spray. The single shot imaging characterised the spray regions of near-nozzle flow, the breakup processes and the developed spray. The phase-Doppler system resolved the three components of velocity and size for the droplet flow as measured on radial profiles for four axial distances from the nozzle exit. A Stokes number, Stk, analysis of the droplets’ response times to the airflow time-scales showed that droplets < 5 µm followed the airflow faithfully and so were used to estimate the local airflow velocity. This allowed a comparison of both the droplet and airflow fields in terms of their mean and fluctuating velocity components to be made. The formation of the hollow cone spray and the interaction of the fragments and droplets with the air, through viscous drag, induce complex entrained airflows. The airflow was found to be highly anisotropic, fluctuating preferentially in the downstream direction, and spatially varying within three distinct spray regions. The air drag establishes a positive size–velocity correlation of droplets; their Stk reduces with axial distance and increases with droplet size and dp; so that Stk 1 for 20–40 µm droplets and the largest droplets (80–160 µm, Stk > 10) move ballistically. The spatially resolved mean and turbulent kinetic energies of the air and spectra of the droplet velocity fluctuations are detailed in the paper. These findings are relevant to scientists and engineers modelling the complex two-phase flows.en
dc.formattextcs
dc.format.extent788-804cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationInternational journal of heat and mass transfer. 2018, vol. 121, issue 6, p. 788-804.en
dc.identifier.doi10.1016/j.ijheatmasstransfer.2018.01.003cs
dc.identifier.issn0017-9310cs
dc.identifier.orcid0000-0002-1268-8434cs
dc.identifier.orcid0000-0002-1193-519Xcs
dc.identifier.orcid0000-0002-1409-5165cs
dc.identifier.other143747cs
dc.identifier.researcheridA-9224-2013cs
dc.identifier.researcheridAAY-7288-2021cs
dc.identifier.researcheridCVT-7747-2022cs
dc.identifier.scopus23090535800cs
dc.identifier.scopus57189715785cs
dc.identifier.scopus6602494673cs
dc.identifier.urihttp://hdl.handle.net/11012/184693
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofInternational journal of heat and mass transfercs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S001793101735024Xcs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0017-9310/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectgas-liquid flowen
dc.subjectdroplet clusteringen
dc.subjecthollow-cone sprayen
dc.subjectair-droplet interactionen
dc.subjectStokes numberen
dc.subjectdroplet dynamicsen
dc.subjectflow seedingen
dc.titleAir–liquid interactions in a pressure-swirl sprayen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionacceptedVersionen
sync.item.dbidVAV-143747en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:47:11en
sync.item.modts2025.01.17 18:32:40en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. EÚ-odbor termomechaniky a techniky prostředícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
airliquidvut.pdf
Size:
2.73 MB
Format:
Adobe Portable Document Format
Description:
airliquidvut.pdf