Air–liquid interactions in a pressure-swirl spray

Loading...
Thumbnail Image

Authors

Jedelský, Jan
Malý, Milan
Del Corral, Noé Pinto
Wigley, Graham
Janáčková, Lada
Jícha, Miroslav

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

The energy transfer between a liquid hollow cone spray and the surrounding air has been studied using both imaging and phase-Doppler techniques. The spray was produced by a pressure-swirl atomizer discharging Jet A-1 fuel at inlet over pressures of dp = 0.5, 1.0 and 1.5 MPa into quiescent ambient air. The liquid exits the nozzle as a conical film which thins as it spreads and develops long- and short-wave sinusoidal instabilities with breakup occurring, at the length smaller than that predicted by the inviscid model, to form film fragments and ultimately droplets downstream the spray. The single shot imaging characterised the spray regions of near-nozzle flow, the breakup processes and the developed spray. The phase-Doppler system resolved the three components of velocity and size for the droplet flow as measured on radial profiles for four axial distances from the nozzle exit. A Stokes number, Stk, analysis of the droplets’ response times to the airflow time-scales showed that droplets < 5 µm followed the airflow faithfully and so were used to estimate the local airflow velocity. This allowed a comparison of both the droplet and airflow fields in terms of their mean and fluctuating velocity components to be made. The formation of the hollow cone spray and the interaction of the fragments and droplets with the air, through viscous drag, induce complex entrained airflows. The airflow was found to be highly anisotropic, fluctuating preferentially in the downstream direction, and spatially varying within three distinct spray regions. The air drag establishes a positive size–velocity correlation of droplets; their Stk reduces with axial distance and increases with droplet size and dp; so that Stk 1 for 20–40 µm droplets and the largest droplets (80–160 µm, Stk > 10) move ballistically. The spatially resolved mean and turbulent kinetic energies of the air and spectra of the droplet velocity fluctuations are detailed in the paper. These findings are relevant to scientists and engineers modelling the complex two-phase flows.
The energy transfer between a liquid hollow cone spray and the surrounding air has been studied using both imaging and phase-Doppler techniques. The spray was produced by a pressure-swirl atomizer discharging Jet A-1 fuel at inlet over pressures of dp = 0.5, 1.0 and 1.5 MPa into quiescent ambient air. The liquid exits the nozzle as a conical film which thins as it spreads and develops long- and short-wave sinusoidal instabilities with breakup occurring, at the length smaller than that predicted by the inviscid model, to form film fragments and ultimately droplets downstream the spray. The single shot imaging characterised the spray regions of near-nozzle flow, the breakup processes and the developed spray. The phase-Doppler system resolved the three components of velocity and size for the droplet flow as measured on radial profiles for four axial distances from the nozzle exit. A Stokes number, Stk, analysis of the droplets’ response times to the airflow time-scales showed that droplets < 5 µm followed the airflow faithfully and so were used to estimate the local airflow velocity. This allowed a comparison of both the droplet and airflow fields in terms of their mean and fluctuating velocity components to be made. The formation of the hollow cone spray and the interaction of the fragments and droplets with the air, through viscous drag, induce complex entrained airflows. The airflow was found to be highly anisotropic, fluctuating preferentially in the downstream direction, and spatially varying within three distinct spray regions. The air drag establishes a positive size–velocity correlation of droplets; their Stk reduces with axial distance and increases with droplet size and dp; so that Stk 1 for 20–40 µm droplets and the largest droplets (80–160 µm, Stk > 10) move ballistically. The spatially resolved mean and turbulent kinetic energies of the air and spectra of the droplet velocity fluctuations are detailed in the paper. These findings are relevant to scientists and engineers modelling the complex two-phase flows.

Description

Citation

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER. 2018, vol. 121, issue 6, p. 788-804.
https://www.sciencedirect.com/science/article/pii/S001793101735024X

Document type

Peer-reviewed

Document version

Accepted version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO