Lagrangeovský model pohybu kavitační bubliny
but.committee | prof. RNDr. Josef Šlapal, CSc. (předseda) prof. RNDr. Miloslav Druckmüller, CSc. (místopředseda) doc. Ing. Luděk Nechvátal, Ph.D. (člen) doc. RNDr. Jiří Tomáš, Dr. (člen) prof. Mgr. Pavel Řehák, Ph.D. (člen) Prof. Bruno Rubino (člen) Prof. Corrado Lattanzio (člen) Assoc. Prof. Massimiliano Giuli (člen) | cs |
but.defence | additional questions: Šlapal: applicability on other kinds of liquids Nechvátal: cause of failure of MATLAB | cs |
but.jazyk | angličtina (English) | |
but.program | Aplikované vědy v inženýrství | cs |
but.result | práce byla úspěšně obhájena | cs |
dc.contributor.advisor | Rudolf, Pavel | en |
dc.contributor.author | Bossio Castro, Alvaro Manuel | en |
dc.contributor.referee | Zatočilová, Jitka | en |
dc.date.created | 2019 | cs |
dc.description.abstract | In this thesis, the dynamics of an isolated cavitation bubble submerged in a steady flow is studied numerically. A Lagrangian-Eulerian approach is considered, in which properties of the fluid are computed first by means of Eulerian methods (in this study the commercial CFD software Ansys Fluent 19 was used) and the trajectory of the bubble is then computed in a Lagrangian fashion, i.e. the bubble is considered as a small particle moving relative to the fluid, due to the effect of several forces depending on fluid's pressure field, fluid's velocity field and bubble's radius. Bubble's radius dynamics, modeled by Rayleigh-Plesset equation, has a big influence on its kinetics, so a special attention is given to it. Two study cases are considered. The first one, motivated by acoustic cavitation is concerned with the response of the bubble's radius in a static flow under the influence of an oscillatory pressure field, the second one studies the trajectory of the bubble submerged in a fluid passing by a Venturi tube and a sharp-edged orifice plate. | en |
dc.description.abstract | In this thesis, the dynamics of an isolated cavitation bubble submerged in a steady flow is studied numerically. A Lagrangian-Eulerian approach is considered, in which properties of the fluid are computed first by means of Eulerian methods (in this study the commercial CFD software Ansys Fluent 19 was used) and the trajectory of the bubble is then computed in a Lagrangian fashion, i.e. the bubble is considered as a small particle moving relative to the fluid, due to the effect of several forces depending on fluid's pressure field, fluid's velocity field and bubble's radius. Bubble's radius dynamics, modeled by Rayleigh-Plesset equation, has a big influence on its kinetics, so a special attention is given to it. Two study cases are considered. The first one, motivated by acoustic cavitation is concerned with the response of the bubble's radius in a static flow under the influence of an oscillatory pressure field, the second one studies the trajectory of the bubble submerged in a fluid passing by a Venturi tube and a sharp-edged orifice plate. | cs |
dc.description.mark | A | cs |
dc.identifier.citation | BOSSIO CASTRO, A. Lagrangeovský model pohybu kavitační bubliny [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2019. | cs |
dc.identifier.other | 117229 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/175486 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství | cs |
dc.rights | Standardní licenční smlouva - přístup k plnému textu bez omezení | cs |
dc.subject | Cavitation | en |
dc.subject | bubble dynamics | en |
dc.subject | Rayleigh-Plesset equation | en |
dc.subject | ordinary differential equations | en |
dc.subject | numerical methods for odes. | en |
dc.subject | Cavitation | cs |
dc.subject | bubble dynamics | cs |
dc.subject | Rayleigh-Plesset equation | cs |
dc.subject | ordinary differential equations | cs |
dc.subject | numerical methods for odes. | cs |
dc.title | Lagrangeovský model pohybu kavitační bubliny | en |
dc.title.alternative | Lagrangian tracking of the cavitation bubble | cs |
dc.type | Text | cs |
dc.type.driver | masterThesis | en |
dc.type.evskp | diplomová práce | cs |
dcterms.dateAccepted | 2019-06-10 | cs |
dcterms.modified | 2019-06-17-07:27:03 | cs |
eprints.affiliatedInstitution.faculty | Fakulta strojního inženýrství | cs |
sync.item.dbid | 117229 | en |
sync.item.dbtype | ZP | en |
sync.item.insts | 2025.03.27 08:46:37 | en |
sync.item.modts | 2025.01.17 09:53:08 | en |
thesis.discipline | Matematické inženýrství | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematiky | cs |
thesis.level | Inženýrský | cs |
thesis.name | Ing. | cs |