Lagrangeovský model pohybu kavitační bubliny

Loading...
Thumbnail Image

Date

Authors

Bossio Castro, Alvaro Manuel

Mark

A

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta strojního inženýrství

ORCID

Abstract

In this thesis, the dynamics of an isolated cavitation bubble submerged in a steady flow is studied numerically. A Lagrangian-Eulerian approach is considered, in which properties of the fluid are computed first by means of Eulerian methods (in this study the commercial CFD software Ansys Fluent 19 was used) and the trajectory of the bubble is then computed in a Lagrangian fashion, i.e. the bubble is considered as a small particle moving relative to the fluid, due to the effect of several forces depending on fluid's pressure field, fluid's velocity field and bubble's radius. Bubble's radius dynamics, modeled by Rayleigh-Plesset equation, has a big influence on its kinetics, so a special attention is given to it. Two study cases are considered. The first one, motivated by acoustic cavitation is concerned with the response of the bubble's radius in a static flow under the influence of an oscillatory pressure field, the second one studies the trajectory of the bubble submerged in a fluid passing by a Venturi tube and a sharp-edged orifice plate.
In this thesis, the dynamics of an isolated cavitation bubble submerged in a steady flow is studied numerically. A Lagrangian-Eulerian approach is considered, in which properties of the fluid are computed first by means of Eulerian methods (in this study the commercial CFD software Ansys Fluent 19 was used) and the trajectory of the bubble is then computed in a Lagrangian fashion, i.e. the bubble is considered as a small particle moving relative to the fluid, due to the effect of several forces depending on fluid's pressure field, fluid's velocity field and bubble's radius. Bubble's radius dynamics, modeled by Rayleigh-Plesset equation, has a big influence on its kinetics, so a special attention is given to it. Two study cases are considered. The first one, motivated by acoustic cavitation is concerned with the response of the bubble's radius in a static flow under the influence of an oscillatory pressure field, the second one studies the trajectory of the bubble submerged in a fluid passing by a Venturi tube and a sharp-edged orifice plate.

Description

Citation

BOSSIO CASTRO, A. Lagrangeovský model pohybu kavitační bubliny [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2019.

Document type

Document version

Date of access to the full text

Language of document

en

Study field

Matematické inženýrství

Comittee

prof. RNDr. Josef Šlapal, CSc. (předseda) prof. RNDr. Miloslav Druckmüller, CSc. (místopředseda) doc. Ing. Luděk Nechvátal, Ph.D. (člen) doc. RNDr. Jiří Tomáš, Dr. (člen) prof. Mgr. Pavel Řehák, Ph.D. (člen) Prof. Bruno Rubino (člen) Prof. Corrado Lattanzio (člen) Assoc. Prof. Massimiliano Giuli (člen)

Date of acceptance

2019-06-10

Defence

additional questions: Šlapal: applicability on other kinds of liquids Nechvátal: cause of failure of MATLAB

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO