Novel Hybrid UNet++ and LSTM Model for Enhanced Attack Detection and Classification in IoMT Traffic
dc.contributor.author | Mezina, Anzhelika | cs |
dc.contributor.author | Nurmi, Jari | cs |
dc.contributor.author | Ometov, Aleksandr | cs |
dc.coverage.issue | April | cs |
dc.coverage.volume | 13 | cs |
dc.date.accessioned | 2025-05-30T12:56:00Z | |
dc.date.available | 2025-05-30T12:56:00Z | |
dc.date.issued | 2025-03-24 | cs |
dc.description.abstract | The Internet of Medical Things (IoMT) transforms healthcare by allowing real-time monitoring, diagnosis, and treatment using interconnected medical devices and sensors. However, the rapid growth of IoMT brings significant security and privacy challenges due to its critical vulnerability to cyber-attacks. This paper introduces a novel deep learning approach designed to analyze IoMT traffic and identify malicious activities. By leveraging the CIC IoMT dataset, we improved an existing neural network model to improve prediction accuracy. Our approach combines UNet++ and Long Short-Term Memory (LSTM) models to extract network traffic features effectively. Experimental results show that the proposed model outperforms traditional algorithms, achieving an accuracy of 99.92% in anomaly detection and 87.96% in attack categorization. Finally, we highlight the main limitations as well as possibilities for real-world implementation of the approach. | en |
dc.format | text | cs |
dc.format.extent | 57589-57603 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | IEEE Access. 2025, vol. 13, issue April, p. 57589-57603. | en |
dc.identifier.doi | 10.1109/ACCESS.2025.3553966 | cs |
dc.identifier.issn | 2169-3536 | cs |
dc.identifier.other | 197513 | cs |
dc.identifier.uri | https://hdl.handle.net/11012/251191 | |
dc.language.iso | en | cs |
dc.publisher | IEEE | cs |
dc.relation.ispartof | IEEE Access | cs |
dc.relation.uri | https://ieeexplore.ieee.org/document/10937494 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2169-3536/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | Anomaly detection | en |
dc.subject | Classification | en |
dc.subject | IoMT | en |
dc.subject | Healthcare | en |
dc.subject | LSTM | en |
dc.subject | Network traffic | en |
dc.subject | UNet++ | en |
dc.title | Novel Hybrid UNet++ and LSTM Model for Enhanced Attack Detection and Classification in IoMT Traffic | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-197513 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.05.30 14:56:00 | en |
sync.item.modts | 2025.05.30 14:32:55 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikací | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2025Mezina.pdf
- Size:
- 2.81 MB
- Format:
- Adobe Portable Document Format
- Description:
- file 2025Mezina.pdf