A New MCMC Sampling Based Segment Model for Radar Target Recognition

dc.contributor.authorHadavi, Mahdi
dc.contributor.authorRadmard, Mojtaba
dc.contributor.authorNayebi, Mohammad Mahdi
dc.coverage.issue1cs
dc.coverage.volume24cs
dc.date.accessioned2015-05-21T12:36:02Z
dc.date.available2015-05-21T12:36:02Z
dc.date.issued2015-04cs
dc.description.abstractOne of the main tools in radar target recognition is high resolution range profile (HRRP)‎. ‎However‎, ‎it is very sensitive to the aspect angle‎. ‎One solution to this problem is to assume the consecutive samples of HRRP identically independently distributed (IID) in small frames of aspect angles‎, ‎an assumption which is not true in reality‎. ‎However, b‎‎ased on this assumption‎, ‎some models have been developed to characterize the sequential information contained in the multi-aspect radar echoes‎. ‎Therefore‎, ‎they only consider the short dependency between consecutive samples‎. ‎Here‎, ‎we propose an alternative model‎, ‎the segment model‎, ‎to address the shortcomings of these assumptions‎. ‎In addition‎, ‎using a Markov chain Monte-Carlo (MCMC) based Gibbs sampler as an iterative approach to estimate the parameters of the segment model‎, ‎we will show that the proposed method is able to estimate the parameters with quite satisfying accuracy and computational load‎.en
dc.formattextcs
dc.format.extent280-287cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRadioengineering. 2015 vol. 24, č. 1, s. 280-287. ISSN 1210-2512cs
dc.identifier.doi10.13164/re.2015.0280en
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/38763
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttp://www.radioeng.cz/fulltexts/2015/15_01_0280_0287.pdfcs
dc.rightsCreative Commons Attribution 3.0 Unported Licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en
dc.subjectRadar target recognition‎en
dc.subject‎segment model‎en
dc.subject‎Markov chain Monte-Carlo‎en
dc.subject‎Gibbs sampleren
dc.titleA New MCMC Sampling Based Segment Model for Radar Target Recognitionen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
15_01_0280_0287.pdf
Size:
263.68 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections