Influence of Control Points Configuration on the Mobile Laser Scanning Accuracy

Loading...
Thumbnail Image

Authors

Kalvoda, Petr
Nosek, Jakub
Kalvodová, Petra

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing
Altmetrics

Abstract

Mobile mapping systems (MMS) are becoming widely used in standard geodetic tasks more commonly in the last years. The paper is focused on the influence of control points (CPs) number and configuration on mobile laser scanning accuracy. The mobile laser scanning (MLS) data was acquired by MMS RIEGL VMX-450. The resulting point cloud was compared with two different reference data sets. The first reference data set consisted of a high-accuracy test point field (TPF) measured by a Trimble R8s GNSS system and a Trimble S8 HP total station. The second reference data set was a point cloud from terrestrial laser scanning (TLS) using two Faro Focus3D X 130 laser scanners. The coordinates of both reference data sets were determined with significantly higher accuracy than the coordinates of the tested MLS point cloud. The accuracy testing is based on coordinate differences between the reference data set and the tested MLS point cloud. There is a minimum number of 6-7 CPs in our scanned area (based on MLS trajectory length) to achieve the declared relative accuracy of trajectory positioning according to the RIEGL datasheet. We tested two types of ground control point (GCP) configurations for 7 GCPs, using TPF reference data. The first type is a trajectory-based CPs configuration, and the second is a geometry-based CPs configuration. The accuracy differences of the MLS point clouds with trajectory-based CPs configuration and geometry-based CPs configuration are not statistically significant. From a practical perspective, a geometry-based CPs configuration is more advantageous in the nonlinear type of urban area such as our one. The following analyzes are performed on geometry-based CPs configuration variants. We tested the influence of changing the location of two CPs from ground to roof. The effect of the vertical configuration of the CPs on the accuracy of the tested MLS point cloud has not been demonstrated. The effect of the number of control points on the accuracy of the MLS point cloud was also tested. In the overall statistics using TPF, the accuracy increases significantly with increasing the number of GCPs up to 6. This number corresponds to a requirement of the manufacturer. Although further increasing the number of CPs does not significantly increase the global accuracy, local accuracy improves with increasing the number of CPs up to 10 (average spacing 50 m) according to the comparison with the TLS reference point cloud. The accuracy test of the MLS point cloud was divided into the horizontal accuracy test on the facade data subset and the vertical accuracy test on the road data subset using the TLS reference point cloud. The results of this paper can help improve the efficiency and accuracy of the mobile mapping process in geodetic praxis. © Published under licence by IOP Publishing Ltd.
Mobile mapping systems (MMS) are becoming widely used in standard geodetic tasks more commonly in the last years. The paper is focused on the influence of control points (CPs) number and configuration on mobile laser scanning accuracy. The mobile laser scanning (MLS) data was acquired by MMS RIEGL VMX-450. The resulting point cloud was compared with two different reference data sets. The first reference data set consisted of a high-accuracy test point field (TPF) measured by a Trimble R8s GNSS system and a Trimble S8 HP total station. The second reference data set was a point cloud from terrestrial laser scanning (TLS) using two Faro Focus3D X 130 laser scanners. The coordinates of both reference data sets were determined with significantly higher accuracy than the coordinates of the tested MLS point cloud. The accuracy testing is based on coordinate differences between the reference data set and the tested MLS point cloud. There is a minimum number of 6-7 CPs in our scanned area (based on MLS trajectory length) to achieve the declared relative accuracy of trajectory positioning according to the RIEGL datasheet. We tested two types of ground control point (GCP) configurations for 7 GCPs, using TPF reference data. The first type is a trajectory-based CPs configuration, and the second is a geometry-based CPs configuration. The accuracy differences of the MLS point clouds with trajectory-based CPs configuration and geometry-based CPs configuration are not statistically significant. From a practical perspective, a geometry-based CPs configuration is more advantageous in the nonlinear type of urban area such as our one. The following analyzes are performed on geometry-based CPs configuration variants. We tested the influence of changing the location of two CPs from ground to roof. The effect of the vertical configuration of the CPs on the accuracy of the tested MLS point cloud has not been demonstrated. The effect of the number of control points on the accuracy of the MLS point cloud was also tested. In the overall statistics using TPF, the accuracy increases significantly with increasing the number of GCPs up to 6. This number corresponds to a requirement of the manufacturer. Although further increasing the number of CPs does not significantly increase the global accuracy, local accuracy improves with increasing the number of CPs up to 10 (average spacing 50 m) according to the comparison with the TLS reference point cloud. The accuracy test of the MLS point cloud was divided into the horizontal accuracy test on the facade data subset and the vertical accuracy test on the road data subset using the TLS reference point cloud. The results of this paper can help improve the efficiency and accuracy of the mobile mapping process in geodetic praxis. © Published under licence by IOP Publishing Ltd.

Description

Citation

IOP Conference Series: Earth and Environmental Science. 2021, vol. 906, issue 1, p. 1-10.
https://iopscience.iop.org/article/10.1088/1755-1315/906/1/012091

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported
Citace PRO