UV Tuning of Cadmium Telluride Quantum Dots (CdTe QDs) – Assessed by Spectroscopy and Electrochemistry

Loading...
Thumbnail Image

Authors

Nejdl, Lukáš
Richtera, Lukáš
Xhaxhiu, Kledi
Kenšová, Renáta
Kudr, Jiří
Ruttkay-Nedecký, Branislav
Kynický, Jindřich
Wawrzak, Dorota
Adam, Vojtěch
Kizek, René

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

ESG

Abstract

In this work, the electrochemical analysis (potentiometric stripping analysis – PSA, cyclic voltammetry – CV) and evaluation of fluorescence properties of cadmium telluride quantum dots (CdTe QDs) covered by mercaptosuccinic acid (MSA) were performed. Using CV it was found that average value of E of QDs is lower than 0.059 V and I is in direct correlation with square root of scan rates, therefore it can be assumed that this system represents rather reversible than quasi-reversible process. Further, it was found that nearly 1.4 electrons are exchanged in both cases, which corresponded with expected two-electron transfer. Fluorescence analysis showed that UV radiation (254 and 312 nm) significantly changes fluorescence properties of CdTe QDs in time 0 – 60 min. It was found that after 5 min of UV irradiation ( = 312 nm) the fluorescence intensity increased by 37% and at = 254 nm the increase in fluorescence intensity was even higher, by 45% (compared to the control without irradiation). UV radiation also caused a shift in the emission maximum of CdTe QDs in range 2 – 70 nm. This work opens up new ways for tuning the optical properties of QDs.
In this work, the electrochemical analysis (potentiometric stripping analysis – PSA, cyclic voltammetry – CV) and evaluation of fluorescence properties of cadmium telluride quantum dots (CdTe QDs) covered by mercaptosuccinic acid (MSA) were performed. Using CV it was found that average value of E of QDs is lower than 0.059 V and I is in direct correlation with square root of scan rates, therefore it can be assumed that this system represents rather reversible than quasi-reversible process. Further, it was found that nearly 1.4 electrons are exchanged in both cases, which corresponded with expected two-electron transfer. Fluorescence analysis showed that UV radiation (254 and 312 nm) significantly changes fluorescence properties of CdTe QDs in time 0 – 60 min. It was found that after 5 min of UV irradiation ( = 312 nm) the fluorescence intensity increased by 37% and at = 254 nm the increase in fluorescence intensity was even higher, by 45% (compared to the control without irradiation). UV radiation also caused a shift in the emission maximum of CdTe QDs in range 2 – 70 nm. This work opens up new ways for tuning the optical properties of QDs.

Description

Citation

International Journal of Electrochemical Science. 2016, vol. 11, issue 1, p. 175-188.
http://www.electrochemsci.org/papers/vol11/110100175.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

DOI

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO