Efficiency of Supervised Machine Learning Algorithms in Regular and Encrypted VoIP Classification within NFV Environment

Loading...
Thumbnail Image

Authors

Ilievski, Gjorgji
Latkoski, Pero

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

Cloudification of all computing environments is an undergoing process. The process has overpassed the classical Virtual Machines (VM) and Software-Defined Networking (SDN) approach and has moved towards dockerizing, microservices, app functions, network functions etc. 5G penetration is another trend, and it is built on such platforms. In this environment we are investigating the efficiency of supervised machine learning algorithms for classification of regular and encrypted Voice over IP (VoIP) traffic that 5G relies on, within a virtualized Network Functions Virtualization (NFV) environment and an east-west based network traffic. We are using statistical methods for classification of network packets without the need of inspecting the payload data and without the source, destination and port information of the packets. The efficiency is analyzed from a point of precision of the classification, but also from a point of time consumption, as adding delay to the original traffic may cause a problem, especially within 5G environments where packet delay is crucial.

Description

Citation

Radioengineering. 2020 vol. 29, č. 1, s. 243-250. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2019/20_01_0243_0250.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International license
Citace PRO