Independent Channel Residual Convolutional Network for Gunshot Detection

Loading...
Thumbnail Image

Authors

Bajzík, Jakub
Přinosil, Jiří
Jarina, Roman
Mekyska, Jiří

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Science and Information Organization
Altmetrics

Abstract

The main purpose of this work is to propose a robust approach for dangerous sound events detection (e.g. gunshots) to improve recent surveillance systems. Despite the fact that the detection and classification of different sound events has a long history in signal processing, the analysis of environmental sounds is still challenging. The most recent works aim to prefer the time-frequency 2-D representation of sound as input to feed convolutional neural networks. This paper includes an analysis of known architectures as well as a newly proposed Independent Channel Residual Convolutional Network architecture based on standard residual blocks. Our approach consists of processing three different types of features in the individual channels. The UrbanSound8k and the Free Firearm Sound Library audio datasets are used for training and testing data generation, achieving a 98 % F1 score. The model was also evaluated in the wild using manually annotated movie audio track, achieving a 44 % F1 score, which is not too high but still better than other state-of-the-art techniques.
The main purpose of this work is to propose a robust approach for dangerous sound events detection (e.g. gunshots) to improve recent surveillance systems. Despite the fact that the detection and classification of different sound events has a long history in signal processing, the analysis of environmental sounds is still challenging. The most recent works aim to prefer the time-frequency 2-D representation of sound as input to feed convolutional neural networks. This paper includes an analysis of known architectures as well as a newly proposed Independent Channel Residual Convolutional Network architecture based on standard residual blocks. Our approach consists of processing three different types of features in the individual channels. The UrbanSound8k and the Free Firearm Sound Library audio datasets are used for training and testing data generation, achieving a 98 % F1 score. The model was also evaluated in the wild using manually annotated movie audio track, achieving a 44 % F1 score, which is not too high but still better than other state-of-the-art techniques.

Description

Citation

International Journal of Advanced Computer Science and Applications. 2022, vol. 13, issue 4, p. 950-958.
https://thesai.org/Publications/ViewPaper?Volume=13&Issue=4&Code=IJACSA&SerialNo=108

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO