Gamma radiation attenuation, mechanical properties and microstructure of barite-modified cement and geopolymer mortars

dc.contributor.authorJóźwiak-Niedźwiedska, Dariacs
dc.contributor.authorRovnaník, Pavelcs
dc.contributor.authorDabrowski, Mariuszcs
dc.contributor.authorOśko, Jakubcs
dc.contributor.authorKuć, Michalcs
dc.contributor.authorMaciak, Maciejcs
dc.coverage.issue4cs
dc.coverage.volume57cs
dc.date.accessioned2025-04-04T11:56:36Z
dc.date.available2025-04-04T11:56:36Z
dc.date.issued2024-10-30cs
dc.description.abstractThe present study contributes to the development of alternative materials for radiation shielding, focusing on environmental sustainability and material cost efficiency. The primary aim was to evaluate the compressive and flexural strength, mineral composition, microstructure, and gamma-ray attenuation properties of cement mortars and geopolymer mortars containing barite powder. Mortars based on ordinary Portland cement (OPC) and fly ash geopolymers with varying amounts of barite powder were assessed for their shielding properties at energy levels associated with the decay of 137Cs. From the results, key parameters such as the linear attenuation coefficient (µ), mass attenuation coefficient (µm), half-value layer (HVL), and tenth-value layer (TVL) were determined. The results showed that while cement based composites exhibited superior gamma radiation attenuation compared to fly ash geopolymer mortars, the latter had higher mass attenuation efficiency, meaning less material density was required for the same level of shielding. Additionally, cement mortars had 23–25% highermechanical strength thangeopolymermortars. Importantly, the inclusionof barite powder improved the radiation shielding performance of both materials by 7–10%, demonstrating itseffectiveness in enhancing the protective properties of these mortars. This research highlights the potential of fly ash geopolymer mortars as viable, eco-friendly alternatives to traditional cement mortars in radiation shielding applications.en
dc.formattextcs
dc.format.extent11cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationNUCL ENG TECHNOL. 2024, vol. 57, issue 4, 11 p.en
dc.identifier.doi10.1016/j.net.2024.10.057cs
dc.identifier.issn1738-5733cs
dc.identifier.orcid0000-0001-8404-6505cs
dc.identifier.other191363cs
dc.identifier.researcheridB-3901-2010cs
dc.identifier.scopus16246538000cs
dc.identifier.urihttps://hdl.handle.net/11012/250759
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofNUCL ENG TECHNOLcs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S173857332400545Xcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1738-5733/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectCement mortaren
dc.subjectfly ash geopolymer mortaren
dc.subjectbariteen
dc.subjectgamma ray attenuationen
dc.subjectmicrostructureen
dc.titleGamma radiation attenuation, mechanical properties and microstructure of barite-modified cement and geopolymer mortarsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-191363en
sync.item.dbtypeVAVen
sync.item.insts2025.04.04 13:56:36en
sync.item.modts2025.04.04 09:32:05en
thesis.grantorVysoké učení technické v Brně. Fakulta stavební. Ústav chemiecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S173857332400545Xmain.pdf
Size:
6.15 MB
Format:
Adobe Portable Document Format
Description:
file 1s2.0S173857332400545Xmain.pdf
Collections